A RECENT REVIEW OF THE SANDWICH-STRUCTURED COMPOSITE METAMATERIALS: STATIC AND DYNAMIC ANALYSIS

Authors

  • Emad Kadum Njim Ministry of Industry and Minerals, State Company for Rubber and Tires Industries, Iraq https://orcid.org/0000-0001-9694-971X
  • Sadiq Emad Sadiq Department of Aeronautical Technical Engineering, Technical Engineering, College of Najaf, Al-Furat Al-Awsat Technical University, Iraq https://orcid.org/0000-0002-9857-6360
  • Mohsin Noori Hamzah Mechanical Engineering Department, University of Technology, Iraq

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.20282

Keywords:

Metamaterials, additive manufacturing (AM), design aspects, static and dynamic analysis

Abstract

Metamaterials, commonly known as synthetic composites with exotic dynamic characteristics, have recently generated increasing interest. A short description of composite metamaterial and their types, applications, and manufacturing techniques was reported. Contrary to all previous research, this investigation focuses on the recent studies of static and dynamic analysis of composite metamaterial structure and mechanical performance using experimental and finite element method analyses. Furthermore, the literature has described several methods for constructing composite sandwiches, properties, and advantages over conventional materials. Due to the wide variety of materials and configurations used in the final product, there is a corresponding diversity in manufacturing techniques. Therefore, the current research has mainly concentrated on a wealth of information that should be important to all researchers interested in keeping up with the most recent developments in composite metamaterial sandwich structures. Consequently, this study can be considered a guideline for researchers who intend further research on the mechanical behavior analysis and technology of designed composite metamaterial structures.

 

Author Biography

  • Emad Kadum Njim, Ministry of Industry and Minerals, State Company for Rubber and Tires Industries, Iraq

     

     

References

Mouthanna, A., Bakhy, S. H., and Al-Waily, M. 2022. Frequency of Nonlinear Dynamic Response of a Porous Functionally Graded Cylindrical Panels. Jurnal Teknologi. 84 (6): 59-68. https://doi.org/10.11113/jurnalteknologi.v84.18422.

E. K. Njim, S. H. Bakhy and M. Al-Waily. 2021. Free Vibration Analysis of Imperfect Functionally Graded Sandwich Plates: Analytical and Experimental Investigation. Archives of Materials Science and Engineering. 111(2): 49-65. https://doi.org/10.5604/01.3001.0015.5805.

E. Njim, M. Al-Waily, and S. Bakhy. 2021. A Review of the Recent Research on the Experimental Tests of Functionally Graded Sandwich Panels. Journal of Mechanical Engineering Research and Developments. 44(3): 420-441.

Qi, J., Chen, Z., Jiang, P., Hu, W., Wang, Y., Zhao, Z., Cao, X., Zhang, S., Tao, R., Li, Y., & Fang, D. 2021. Recent Progress in Active Mechanical Metamaterials and Construction Principles. Advanced Science. 9(1): 2102662. https://doi.org/10.1002/advs.202102662.

Jha, D. K., T. Kant, and Singh R. K. 2013. A Critical Review of Recent Research on Functionally Graded Plates. Composite Structures. 96: 833-849.

Mu, D., Shu, H., Zhao, L., and An, S. 2020. A Review of Research on Seismic Metamaterials. Advanced Engineering Materials. 22(4): 1901148. https://doi.org/10.1002/adem.201901148.

K. C. B. Banerjee, P. Anil Babu, T., Venkata Shiva Reddy, B. 2021. A Review on Metamaterials for Device Applications. Crystals. 11 (518). https://doi.org/10.3390/cryst11050518.

Dong Han, Xin Ren, Yi Zhang, Xiang Yu Zhang, Xue Gang Zhang, Chen Luo and Yi Min Xie. 2022. Lightweight Auxetic Metamaterials: Design and Characteristic Study, Composite Structures. 293. , https://doi.org/10.1016/j.compstruct.2022.115706.

Kadic, et al. 2019. 3D metamaterials. Nat Rev Phys. 1: 198-210. https://doi.org/10.1038/s42254-018-0018-y.

Teik-Cheng Lim. 2019. A Composite Metamaterial with Sign Switchable Elastic and Hygrothermal Properties Induced by Stress Direction and Environmental Change Reversals. Composite Structures. 220: 185-193. https://doi.org/10.1016/j.compstruct.2019.03.041.14.

Zhang, H., Chen, P., Zhang, Z., Lin, G., and Sun, W. 2023. Structural Response and Energy Absorption Assessment of Corrugated Wall Mechanical Metamaterials under Static and Dynamic Compressive Loading. International Journal of Impact Engineering. 172: 104427. https://doi.org/10.1016/j.ijimpeng.2022.104427.

Andrew, J. J., Schneider, J., Ubaid, J., Velmurugan, R., Gupta, N. K., and Kumar, S. 2021. Energy Absorption Characteristics of Additively Manufactured Plate-Lattices Under Low-Velocity Impact Loading. International Journal of Impact Engineering. 149: 103768. https://doi.org/10.1016/j.ijimpeng.2020.103768.

Lu, Z., Yan, W., Yan, P., and Yan, B. 2020. A Novel Precipitate-Type Architected Metamaterial Strengthened via Orowan Bypass-Like Mechanism. Applied Sciences. 10(21): 7525. https://doi.org/10.3390/app10217525.

Surjadi, J. U., Gao, L., Du, H., Li, X., Xiong, X., Fang, N. X., and Lu, Y. 2019. Mechanical Metamaterials and Their Engineering Applications. Advanced Engineering Materials. 21(3): 1800864. https://doi.org/10.1002/adem.201800864.

Wang, G., Chen, X., and Qiu, C. 2021. On the Macro- and Micro-deformation Mechanisms of Selectively Laser Melted Damage Tolerant Metallic Lattice Structures. Journal of Alloys and Compounds. 852: 156985. https://doi.org/10.1016/j.jallcom.2020.156985.

Chen, J., Xu, W., Wei, Z., Wei, K., and Yang, X. 2021. Stiffness Characteristics for a Series of Lightweight Mechanical Metamaterials with Programmable Thermal Expansion. International Journal of Mechanical Sciences. 202-203: 106527. https://doi.org/10.1016/j.ijmecsci.2021.106527.

Yuan, X., Chen, M., Yao, Y., Guo, X., Huang, Y., Peng, Z., Xu, B., Lv, B., Tao, R., Duan, S., Liao, H., Yao, K., Li, Y., Lei, H., Chen, X., Hong, G., and Fang, D. 2021. Recent Progress in the Design and Fabrication of Multifunctional Structures based on Metamaterials. Current Opinion in Solid State and Materials Science. 25(1): 100883. https://doi.org/10.1016/j.cossms.2020.100883.

Wang, Q., Li, Z., Zhang, Y., Cui, S., Yang, Z., and Lu, Z. 2020. Ultra-low Density Architectured Metamaterial with Superior Mechanical Properties and Energy Absorption Capability. Composites Part B: Engineering. 202: 108379. https://doi.org/10.1016/j.compositesb.2020.108379.

Wu, W., Hu, W., Qian, G., Liao, H., Xu, X., and Berto, F. 2019. Mechanical Design and Multifunctional Applications of Chiral Mechanical Metamaterials: A Review. Materials Design. 180: 107950. https://doi.org/10.1016/j.matdes.2019.107950.

Qian, Y.-J., Cui, Q.-D., Yang, X.-D., and Zhang, W. 2020. Manipulating Transverse Waves through 1D Metamaterial by Longitudinal Vibrations. International Journal of Mechanical Sciences. 168: 105296. https://doi.org/10.1016/j.ijmecsci.2019.105296.

Li, Y., Deng, Z., Yan, G., and Gao, G. 2022. Wave Propagation in Two-dimensional Elastic Metastructures with Triangular Configuration. Thin-Walled Structures. 181: 110043. https://doi.org/10.1016/j.tws.2022.110043.

D’Alessandro, L., Ardito, R., Braghin, F., and Corigliano, A. 2019. Low Frequency 3D Ultra-wide Vibration Attenuation via Elastic Metamaterial. Scientific Reports. 9(1). https://doi.org/10.1038/s41598-019-44507-6.

Sheng, P., Fang, X., Wen, J., and Yu, D. 2021. Vibration Properties and Optimised Design of a Nonlinear Acoustic Metamaterial Beam. Journal of Sound and Vibration. 492: 115739. https://doi.org/10.1016/j.jsv.2020.115739.

Li, Y., Deng, Z., Yan, G., and Gao, G. 2022. Wave Propagation in Two-dimensional Elastic Metastructures with Triangular Configuration. Thin-Walled Structures. 181: 110043. https://doi.org/10.1016/j.tws.2022.110043.

Liao, Y., and Lin, Y.-S. 2020. Reconfigurable Terahertz Metamaterial Using Split-Ring Meta-Atoms with Multifunctional Electromagnetic Characteristics. Applied Sciences. 10(15): 5267. https://doi.org/10.3390/app10155267.

Weifeng Jiang, Guofu Yin, Luofeng Xie and Ming Yin. 2022. Multifunctional 3D Lattice Metamaterials for Vibration Mitigation and Energy Absorption. International Journal of Mechanical Sciences. 233. https://doi.org/10.1016/j.ijmecsci.2022.107678.

Zhang, L., Wang, B., Song, B., Yao, Y., Choi, S.-K., Yang, C., and Shi, Y. 2022. 3D Printed Biomimetic Metamaterials with Graded Porosity and Tapering Topology for Improved Cell Seeding and Bone Regeneration. Bioactive Materials. https://doi.org/10.1016/j.bioactmat.2022.07.009.

Al-Shablle M., Al-Waily M. and Njim, E. K. 2022. Analytical Evaluation of the Influence of Adding Rubber Layers on Free Vibration of Sandwich Structure with the Presence of Nano-reinforced Composite Skins. Archives of Materials Science and Engineering. 116(2): 57-70. https://doi.org/10.5604/01.3001.0016.1190.

Sayyad, A. S., Avhad, P. V., Hadji, L. 2022. On the Static Deformation and Frequency Analysis of Functionally Graded Porous Circular Beams. Forces in Mechanics. 7. https://doi.org/10.1016/j.finmec.2022.100093.

Njim, E. K., Bakhy, S. H., and Al-Waily, M. 2021. Optimisation Design of Functionally Graded Sandwich Plate with Porous Metal Core for Buckling Characterisations. Pertanika Journal of Science and Technology. 29(4). https://doi.org/10.47836/pjst.29.4.47.

Hadji, L., Amoozgar, M., and Tounsi, A. 2022. Nonlinear Thermal Buckling of FG Plates with Porosity based on Hyperbolic Shear Deformation Theory. Steel and Composite Structures. 42(5): 711-722. https://doi.org/10.12989/SCS.2022.42.5.711.

Wu, X., Su, Y., and Shi, J. 2019. Perspective of Additive Manufacturing for Metamaterials Development. Smart Materials and Structures. 28(9): 093001. https://doi.org/10.1088/1361-665x/ab2eb6.

Zadpoor, A. A., Mirzaali, M. J., Valdevit, L., and Hopkins, J. B. 2023. Design, Material, Function, and Fabrication of Metamaterials. APL Materials. 11(2): 020401. https://doi.org/10.1063/5.0144454.

Lu, C., Hsieh, M., Huang, Z., Zhang, C., Lin, Y., Shen, Q., Chen, F., and Zhang, L. 2022. Architectural Design and Additive Manufacturing of Mechanical Metamaterials: A Review. Engineering. 17: 44-63. https://doi.org/10.1016/j.eng.2021.12.023.

Surjadi, J. U., Gao, L., Du, H., Li, X., Xiong, X., Fang, N. X., and Lu, Y. 2019. Mechanical Metamaterials and Their Engineering Applications. Advanced Engineering Materials. 21(3): 1800864. https://doi.org/10.1002/adem.201800864.

Fan, J., Zhang, L., Wei, S., Zhang, Z., Choi, S.-K., Song, B., and Shi, Y. 2021. A Review of Additive Manufacturing of Metamaterials and Developing Trends. Materials Today. 50: 303-328. https://doi.org/10.1016/j.mattod.2021.04.019.

Zhang, S., Qin, M., Wu, B., and Wu, E. 2023. All-dielectric Si Metamaterials with Electromagnetically Induced Transparency and Strong Gap-mode Electric Field Enhancement. Optics Communications. 530: 129143. https://doi.org/10.1016/j.optcom.2022.129143.

Kumar, N., Sonika, Suthar, B., and Rostami, A. 2023. Novel Optical Behaviors of Metamaterial and Polymer-based Ternary Photonic Crystal with Lossless and Lossy Features. Optics Communications. 529: 129073. https://doi.org/10.1016/j.optcom.2022.129073.

Park, E. B., Jeong, Y. C., and Kang, K. 2023. A Novel Auxetic Sandwich Panel for Use in Structural Applications: Fabrication and Parametric Study. Materials Today Communications. 34: 105383. https://doi.org/10.1016/j.mtcomm.2023.105383.

Li, Z., Xie, C., Li, F., Wu, D., and Hu, N. 2023. Heterogeneous Geometric Designs in Auxetic Composites Toward Enhanced Mechanical Properties under Various Loading Scenarios. Composites Communications. 38: 101499. https://doi.org/10.1016/j.coco.2023.101499.

Gao, N., Zhang, Z., Deng, J., Guo, X., Cheng, B., and Hou, H. 2022. Acoustic Metamaterials for Noise Reduction: A Review. Advanced Materials Technologies. 7(6): 2100698. https://doi.org/10.1002/admt.202100698.

Stedman, W., T., and Woods, L. M. 2020. Thermoelectric Transport Control with Metamaterial Composites. Journal of Applied Physics. 128(2): 025104. https://doi.org/10.1063/5.0004037.

Askari, M., Hutchins, D. A., Thomas, P. J., Astolfi, L., Watson, R. L., Abdi, M., Ricci, M., Laureti, S., Nie, L., Freear, S., Wildman, R., Tuck, C., Clarke, M., Woods, E., and Clare, A. T. 2020. Additive Manufacturing of Metamaterials: A Review. Additive Manufacturing. 36: 101562. https://doi.org/10.1016/j.addma.2020.101562.

Wei, H., Hu, Y., Bao, H., and Ruan, X. 2022. Quantifying the Diverse Wave Effects in Thermal Transport of Nanoporous Graphene. Carbon. 197: 18-26. https://doi.org/10.1016/j.carbon.2022.06.011.

Dong, Y., Wang, Y., Ding, C., Zhai, S., and Zhao, X. 2021. Tunable Topological Valley Transport in Acoustic Topological Metamaterials. Physica B: Condensed Matter. 605: 412733. https://doi.org/10.1016/j.physb.2020.412733.

Jing, H., and Min, Z. 2022. Active Modulation of Metamaterial Transport Properties in the Terahertz Range. Optical Materials. 127: 112283. https://doi.org/10.1016/j.optmat.2022.112283.

Zhang, L., Song, B., Choi, S.-K., Yao, Y., and Shi, Y. 2022. Anisotropy-inspired, Simulation-guided Design and 3D Printing of Microlattice Metamaterials with Tailored Mechanical-Transport Performances. Composites Part B: Engineering. 236: 109837. https://doi.org/10.1016/j.compositesb.2022.109837.

Ma, S., Tang, Q., Feng, Q., Song, J., Han, X., and Guo, F. 2019. Mechanical Behaviours and Mass Transport Properties of Bone-mimicking Scaffolds Consisted of Gyroid Structures Manufactured using Selective Laser Melting. Journal of the Mechanical Behavior of Biomedical Materials. 93: 158-169. https://doi.org/10.1016/j.jmbbm.2019.01.023.

Buriak, I. A., Zhurba, V. O., Vorobjov, G. S., Kulizhko, V. R., Kononov, O. K., and Rybalko, O. 2016. Metamaterials: Theory, Classification and Application Strategies (Review). Journal of Nano- and Electronic Physics. 8: 4(2). https://doi.org/10.21272/jnep.8(4(2)).04088.

Yu, W., and Zhou, L. 2022. Seismic Metamaterial Surface for Broadband Rayleigh Waves Attenuation. Materials Design. https://doi.org/10.1016/j.matdes.2022.111509.

Brûlé, S., Enoch, S., and Guenneau, S. 2020. Emergence of Seismic Metamaterials: Current State and Future Perspectives. Physics Letters A. 384(1): 126034). https://doi.org/10.1016/j.physleta.2019.126034.

Muhammad, Kennedy, J., & Lim, C. W. 2022. Machine Learning and Deep Learning in Phononic Crystals and Metamaterials – A Review. Materials Today Communications. 33: 104606. https://doi.org/10.1016/j.mtcomm.2022.104606.

Muhammad, Ogun, O., and Kennedy, J. 2022. Inverse Design of a Topological Phononic Beam with Interface Modes. Journal of Physics D: Applied Physics. 56(1): 015106. https://doi.org/10.1088/1361-6463/ac9ce8.

Xu, X., Wu, Q., Pang, Y., Cao, Y., Fang, Y., Huang, G., and Cao, C. 2021. Multifunctional Metamaterials for Energy Harvesting and Vibration Control. Advanced Functional Materials. 32(7): 2107896. https://doi.org/10.1002/adfm.202107896.

Gibson, B., Nguyen, T., Sinaie, S., Heath, D., and Ngo, T. 2022. The Low Frequency Structure-borne Sound Problem in Multi-Storey Timber Buildings and Potential of Acoustic Metamaterials: A Review. Building and Environment. 224: 109531. https://doi.org/10.1016/j.buildenv.2022.109531.

Yang, L., Wang, L., Wu, K., and Gao, Y. 2022. Splitting of Waves in Rotor-in-rotor Nonlocal Metamaterials by Internal Rotor Coupling. Materials Design. 221: 110921. https://doi.org/10.1016/j.matdes.2022.110921.

Cui, L., Guo, X., Yu, Q., Wei, G., and Du, X. 2022. Ultralow and Anisotropic Thermal Conductivity in Graphene Phononic Metamaterials. International Journal of Heat and Mass Transfer. 196: 123227. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123227.

Ma, D., Arora, A., Deng, S., Xie, G., Shiomi, J., and Yang, N. 2019. Quantifying Phonon Particle and Wave Transport in Silicon Nanophononic Metamaterial with Cross Junction. Materials Today Physics. 8: 56-61. https://doi.org/10.1016/j.mtphys.2019.01.002.

Dorn, C., & Kochmann, D. M. 2022. Ray Theory for Elastic Wave Propagation in Graded Metamaterials. Journal of the Mechanics and Physics of Solids. 168: 105049. https://doi.org/10.1016/j.jmps.2022.105049.

Wang, D.-F., Wang, Y.-Q., Qian, Z.-H., Tachi, T., and Chuang, K.-C. 2021. A graded Miura-ori Phononic Crystals Lens. Physics Letters A. 418: 127701. https://doi.org/10.1016/j.physleta.2021.127701.

Lustig, B., Elbaz, G., Muhafra, A., and Shmuel, G. 2019. Anomalous Energy Transport in Laminates with Exceptional Points. Journal of the Mechanics and Physics of Solids. 133: 103719. https://doi.org/10.1016/j.jmps.2019.103719.

Kadic, M., Milton, G. W., van Hecke, M., and Wegener, M. 2019. 3D Metamaterials. Nature Reviews Physics. 1(3): 198-210. https://doi.org/10.1038/s42254-018-0018-y.

Ding, W., Chen, T., Chen, C., Chronopoulos, D., Zhu, J., and Assouar, B. 2023. Thomson Scattering-Induced Bandgap in Planar Chiral Phononic Crystals. Mechanical Systems and Signal Processing. 186: 109922. https://doi.org/10.1016/j.ymssp.2022.109922.

Li, Y., Yan, S., and Peng, Y. 2023. Broadband Vibration Attenuation Characteristic of 2D Phononic Crystals with Cross-like Pores. Thin-Walled Structures. 183: 110418. https://doi.org/10.1016/j.tws.2022.110418.

Meng, Z., Wang, L., Li, Z., and Wang, J. 2023. A Theoretical Framework for Joining Multiple Locally Resonant Bandgaps of Metamaterials Towards a Super-wide Bandgap. Composite Structures. 304: 116348. https://doi.org/10.1016/j.compstruct.2022.116348.

Zhang, L., Song, B., Zhang, J., Yao, Y., Lu, J., and Shi, Y. 2022. Decoupling Microlattice Metamaterial Properties through a Structural Design Strategy Inspired by the Hall–Petch Relation. Acta Materialia. 238: 118214. https://doi.org/10.1016/j.actamat.2022.118214.

Hosseini, S. A., Khanniche, S., Snyder, G. J., Huberman, S., Greaney, P. A., and Romano, G. 2022. Mode- and Space-resolved Thermal Transport of Alloy Nanostructures. International Journal of Heat and Mass Transfer. 195: 123191. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123191.

Li, Y., Li, W., Han, T., Zheng, X., Li, J., Li, B., Fan, S., and Qiu, C.-W. 2021. Transforming Heat Transfer with Thermal Metamaterials and Devices. Nature Reviews Materials. 6: 488-507. https://doi.org/10.1038/s41578-021-00283-2.

Long, H., Liu, C., Shao, C., Cheng, Y., Tao, J., Qiu, X., and Liu, X. 2020. Tunable and Broadband Asymmetric Sound Absorptions with Coupling of Acoustic Bright and Dark Modes. Journal of Sound and Vibration. 479: 115371. https://doi.org/10.1016/j.jsv.2020.115371.

Ni, A., and Shi, Z. 2023. Topological Metamaterial Plates: Numerical Investigation, Experimental Validation and Applications. Engineering Structures. 275: 115288. https://doi.org/10.1016/j.engstruct.2022.115288.

Wang, L., Chen, Z., and Cheng, L. 2023. A Metamaterial Plate with Magnetorheological Elastomers and Gradient Resonators for Tuneable, Low-Frequency, and Broadband Flexural Wave Manipulation. Thin-Walled Structures. 184: 110521. https://doi.org/10.1016/j.tws.2022.110521.

Liu, R., Ji, C., Zhao, Z., and Zhou, T. 2015. Metamaterials: Reshape and Rethink. Engineering. 1(2): 179-184. https://doi.org/10.15302/j-eng-2015036.

Wan, M., Yu, K., and Sun, H. 2022. 4D Printed Programmable Auxetic Metamaterials with Shape Memory Effects. Composite Structures. 279: 114791. https://doi.org/10.1016/j.compstruct.2021.114791.

Coronel, L., and Carnevale, V. 2022. Allosteric Metamaterials: Leveraging the Enthalpy-entropy Competition to Mimic the Responsiveness of Biomolecules to External Stimuli. Biophysical Journal. 121(3): 65a. https://doi.org/10.1016/j.bpj.2021.11.2393.

Montgomery, S. M., Kuang, X., Armstrong, C. D., and Qi, H. J. 2020. Recent Advances in Additive Manufacturing of Active Mechanical Metamaterials. Current Opinion in Solid State and Materials Science. 24(5): 100869. https://doi.org/10.1016/j.cossms.2020.100869.

Sadeghi, F., Baniassadi, M., Shahidi, A., and Baghani, M. 2023. TPMS Metamaterial Structures Based on Shape Memory Polymers: Mechanical, Thermal and Thermomechanical Assessment. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2023.02.014.

Srivastava, M., Rathee, S., Patel, V., Kumar, A., and Koppad, P. G. 2022. A Review of Various Materials for Additive Manufacturing: Recent Trends and Processing Issues. Journal of Materials Research and Technology. 21: 2612-2641. https://doi.org/10.1016/j.jmrt.2022.10.015.

Li, C., Peng, Z.-K., and He, Q. 2022. Stimuli-responsive Metamaterials with Information-driven Elastodynamics Programming. Matter. 5(3): 988-1003. https://doi.org/10.1016/j.matt.2021.11.031.

Liu, Y., Zhang, W., Zhang, F., Lan, X., Leng, J., Liu, S., Jia, X., Cotton, C., Sun, B., Gu, B., and Chou, T.-W. 2018. Shape Memory Behavior and Recovery Force of 4D Printed Laminated Miura-origami Structures Subjected to Compressive Loading. Composites Part B: Engineering. 153: 233-242. https://doi.org/10.1016/j.compositesb.2018.07.053.

Boniotti L., Dancette S., Gavazzoni M., Lachambre J., Buffiere J. Y. and Foletti S. 2022. Experimental and Numerical Investigation on Fatigue Damage in Micro-lattice Materials by Digital Volume Correlation and μCT-based Finite Element Models. Engineering Fracture Mechanics. 266. https://doi.org/10.1016/j.engfracmech.2022.108370.

Jia, Z., Liu, F., Jiang, X., and Wang, L. 2020. Engineering Lattice Metamaterials for Extreme Property, Programmability, and Multi-functionality. Journal of Applied Physics. 127(15): 150901. https://doi.org/10.1063/5.0004724.

L. Boniotti, S. Dancette, M. Gavazzoni, J. Lachambre, J. Y. Buffiere, S. Foletti 2022. Experimental and Numerical Investigation on Fatigue Damage in Micro-lattice Materials by Digital Volume Correlation and μCT-based Finite Element Models, Engineering Fracture Mechanics. 266. https://doi.org/10.1016/j.engfracmech.2022.108370.

Dong Han, Xin Ren, Chen Luo, Yi Zhang, Xiang Yu Zhang, Xue Gang Zhang, Wei Jiang, Jian Hao, Yi Min Xie. 2022. Experimental and Computational Investigations of Novel 3D Printed Square Tubular Lattice Metamaterials with Negative Poisson’s Ratio, Additive Manufacturing. 55. https://doi.org/10.1016/j.addma.2022.102789.

Han, D., Ren, X., Zhang, Y., Yu Zhang, X., Gang Zhang, X., Luo, C., and Min Xie, Y. 2022. Lightweight Auxetic Metamaterials: Design and Characteristic Study. Composite Structures. 293: 115706. https://doi.org/10.1016/j.compstruct.2022.115706.

Xiang Yu Zhang, Xin Ren, Yi Zhang, Yi Min Xie. 2022. A Novel Auxetic Metamaterial with Enhanced Mechanical Properties and Tunable Auxeticity. Thin-Walled Structures. 174. https://doi.org/10.1016/j.tws.2022.109162.

Zhang, H., Guo, X., Wu, J., Fang, D. and Zhang, Y. 2018. Soft Mechanical Metamaterials with Unusual Swelling Behavior and Tunable Stress-strain Curves. Science Advances. 4(6). American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/sciadv.aar8535.

Kaiyu Wang, Jiaxin Chen, Zhengtong Han, Kai Wei, Xujing Yang, Zhonggang Wang and Daining Fang. 2022. Synergistically Program Thermal Expansional and Mechanical Performances in 3D Metamaterials: Design-Architecture-Performance, Journal of the Mechanics and Physics of Solids. 169. https://doi.org/10.1016/j.jmps.2022.105064.

Jingxiang Huang, Minghui Fu and Binbin Zheng. 2022. A Novel Series of Mechanical Metamaterials with Sign-changing Coefficient of Thermal Expansion and Their Parameter Analysis. Composite Structures. 299: 116082, https://doi.org/10.1016/j.compstruct.2022.116082.

Li-Rong Long, Ming-Hui Fu and Ling-Ling Hu. 2021. Novel Metamaterials with Thermal-torsion and Tensile-torsion Coupling Effects. Composite Structures. 259. https://doi.org/10.1016/j.compstruct.2020.113429.

Rongchang Zhong, Minghui Fu, Xuan Chen, Binbin Zheng, and Lingling Hu. 2019. A Novel Three-dimensional Mechanical Metamaterial with Compression-torsion Properties. Composite Structures. 226. https://doi.org/10.1016/j.compstruct.2019.111232.

Hui Wang, Chong Zhang and Qing-Hua Qin. 2022. Yang Bai, Tunable Compression-torsion Coupling Effect in Novel Cylindrical Tubular Metamaterial Architected with Boomerang-shaped Tetrachiral Elements. Materials Today Communications. 31. https://doi.org/10.1016/j.mtcomm.2022.103483.

Zhongwen, Z., and Zhao-Dong Xu. 2022. Cylindrical Metastructure Simulating Yielding with Elastic Deformation: Theoretical and Experimental Studies. Materials Today Communications. 33. https://doi.org/10.1016/j.mtcomm.2022.104455.

Dilek, A., Y. and Buket O. Baba. 2022. Measurement of Poisson’s Ratio of the Auxetic Structure. Measurement. 204. https://doi.org/10.1016/j.measurement.2022.112040.

Hang, Y. and Li Ma. 2020. Design and Characterisation of Axisymmetric Auxetic Metamaterials. Composite Structures. 249 https://doi.org/10.1016/j.compstruct.2020.112560.

Hu, W., Cao, X., Zhang, X., Huang, Z., Chen, Z., Wu, W., Xi, L., Li, Y., and Fang, D. 2021. Deformation Mechanisms and Mechanical Performances of Architected Mechanical Metamaterials with Gyroid Topologies: Synchrotron X-ray Radiation In-situ Compression Experiments and 3D Image based Finite Element Analysis. Extreme Mechanics Letters. 44: 101229. https://doi.org/10.1016/j.eml.2021.101229.

Ramachandran, T., and Rashed, I, M. 2022. Impact of Compact and Novel 1-Bit Coding based Metamaterial Design for Microwave Absorption Applications. Journal of Magnetism and Magnetic Materials. 563: 170044. https://doi.org/10.1016/j.jmmm.2022.170044.

Esfandiari, M., et al. 2022. Recent and Emerging Applications of Graphene-based Metamaterials in Electromagnetics. Materials & Design. 221: 110920. https://doi.org/10.1016/j.matdes.2022.110920.

Wang, Y., Zeng, Q., Wang, J., Li, Y., and Fang, D. 2022. Inverse Design of Shell-based Mechanical Metamaterial with Customised Loading Curves based on Machine Learning and Genetic Algorithm. Computer Methods in Applied Mechanics and Engineering. 401: 115571. https://doi.org/10.1016/j.cma.2022.115571.

Cao, X., et al. 2020. Dynamic Compressive Behavior of a Modified Additively Manufactured Rhombic Dodecahedron 316L Stainless Steel Lattice Structure. Thin-Walled Structures. 148: 106586. https://doi.org/10.1016/j.tws.2019.106586.

Peixinho, N., Carvalho, O., Areias, C., Pinto, P., and Silva, F. 2020. Compressive Properties and Energy Absorption of Metal-polymer Hybrid Cellular Structures. Materials Science and Engineering: A. 794: 139921. https://doi.org/10.1016/j.msea.2020.139921.

Sethi, A., Budarapu, P. R., and Vusa, V. R. 2023. Nature-Inspired Bamboo-spiderweb Hybrid Cellular Structures for Impact Applications. Composite Structures. 304: 116298. https://doi.org/10.1016/j.compstruct.2022.116298.

Deng, Y., Li, B., Huang, Z., Lin, Y., and Li, Y. 2022. Experimental and Numerical Studies on the Compression Responses of Novel Mixed Lattice Structures. Materials Today Communications. 33: 104439. https://doi.org/10.1016/j.mtcomm.2022.104439.

Wang, X., Zhang, L., Song, B., Zhang, Z., Zhang, J., Fan, J., Wei, S., Han, Q., & Shi, Y. 2022. Tunable Mechanical Performance of Additively Manufactured Plate Lattice Metamaterials with Half-open-cell Topology. Composite Structures. 300: 116172. https://doi.org/10.1016/j.compstruct.2022.116172.

Han, D., Zhang, Y., Zhang, X. Y., Xie, Y. M., and Ren, X. 2022. Mechanical Characterisation of a Novel Thickness Gradient Auxetic Tubular Structure under Inclined Load. Engineering Structures. 273: 115079. https://doi.org/10.1016/j.engstruct.2022.115079.

Wu, Z., Zhu, B., Wang, R., and Zhang, X. 2022. Design of Mechanical Metamaterial for Energy Absorption using a Beam with a Variable Cross-section. Mechanism and Machine Theory. 176: 105027. https://doi.org/10.1016/j.mechmachtheory.2022.105027.

Findeisen, C., Hohe, J., Kadic, M., and Gumbsch, P. 2017. Characteristics of Mechanical Metamaterials based on Buckling Elements. Journal of the Mechanics and Physics of Solids. 102: 151-164. https://doi.org/10.1016/j.jmps.2017.02.011.

Settimi, V., Lepidi, M., and Bacigalupo, A. 2023. Analytical Spectral Design of Mechanical Metamaterials with Inertia Amplification. Engineering Structures. 274: 115054. https://doi.org/10.1016/j.engstruct.2022.115054.

Mao, J.-J., Wang, S., Tan, W., and Liu, M. 2022. Modular Multistable Metamaterials with Reprogrammable Mechanical Properties. Engineering Structures. 272: 114976. https://doi.org/10.1016/j.engstruct.2022.114976.

Xue, X., Lin, C., Wu, F., Li, Z., and Liao, J. 2023. Lattice Structures with Negative Poisson’s Ratio: A Review. Materials Today Communications. 34: 105132. https://doi.org/10.1016/j.mtcomm.2022.105132.

Mercer, C., Speck, T., Lee, J., Balint, D. S., and Thielen, M. 2022. Effects of Geometry and Boundary Constraint on the Stiffness and Negative Poisson’s Ratio Behaviour of Auxetic Metamaterials under Quasi-static and Impact Loading. International Journal of Impact Engineering. 169: 104315. https://doi.org/10.1016/j.ijimpeng.2022.104315.

Li, Q., Wu, L., Hu, L., Miao, X., Liu, X., and Zou, T. 2023. A Sinusoidal Beam Lattice Structure with Negative Poisson’s Ratio Property. Aerospace Science and Technology. 133: 108103. https://doi.org/10.1016/j.ast.2022.108103.

Wu, L., Zhao, F., Lu, Z., Lin, J.-H., and Jiang, Q. 2022. Impact Energy Absorption Composites with Shear Stiffening Gel-filled Negative Poisson’s Ratio Skeleton by Kirigami Method. Composite Structures. 298: 116009. https://doi.org/10.1016/j.compstruct.2022.116009.

Duan, S., Xi, L., Wen, W., and Fang, D. 2020. A Novel Design Method for 3D Positive and Negative Poisson’s Ratio Material based on Tension-twist Coupling Effects. Composite Structures. 236: 111899. https://doi.org/10.1016/j.compstruct.2020.111899.

Ye, M., Gao, L., and Li, H. 2020. A Design Framework for Gradually Stiffer Mechanical Metamaterial Induced by Negative Poisson’s Ratio Property. Materials & Design. 192: 108751. https://doi.org/10.1016/j.matdes.2020.108751.

Novak, N., Mauko, A., Ulbin, M., Krstulović-Opara, L., Ren, Z., and Vesenjak, M. 2022. Development and Characterisation of Novel Three-dimensional Axisymmetric Chiral Auxetic Structures. Journal of Materials Research and Technology. 17: 2701-2713. https://doi.org/10.1016/j.jmrt.2022.02.025.

Song, Z., Liang, H., Ding, H., and Ma, M. 2023. Structure Design and Mechanical Properties of a Novel Anti-collision System with Negative Poisson’s Ratio Core. International Journal of Mechanical Sciences. 239: 107864. https://doi.org/10.1016/j.ijmecsci.2022.107864.

Harinarayana, V., and Shin, Y. C. 2022. Design and Evaluation of Three–dimensional Axisymmetric Mechanical Metamaterial Exhibiting Negative Poisson’s Ratio. Journal of Materials Research and Technology. 19: 1390-1406. https://doi.org/10.1016/j.jmrt.2022.05.131.

Yu, X., Zhou, J., Liang, H., Jiang, Z., and Wu, L. 2018. Mechanical Metamaterials Associated with Stiffness, Rigidity, and Compressibility: A Brief Review. Progress in Materials Science. 94: 114-173. https://doi.org/10.1016/j.pmatsci.2017.12.003.

Huang, J., Zhang, J., Xu, D., Zhang, S., Tong, H., and Xu, N. 2023. From Jammed Solids to Mechanical Metamaterials : A Brief Review. Current Opinion in Solid State and Materials Science. 27(1): 101053. https://doi.org/10.1016/j.cossms.2022.101053.

Zhang, J., Lu, G., and You, Z. 2020. Large Deformation and Energy Absorption of Additively Manufactured Auxetic Materials and Structures: A Review. Composites Part B: Engineering. 201: 108340. https://doi.org/10.1016/j.compositesb.2020.108340.

Xue, Y., Wang, X., Wang, W., Zhong, X., and Han, F. 2018. Compressive Property of Al-based Auxetic Lattice Structures Fabricated by 3-D Printing Combined with Investment Casting. Materials Science and Engineering: A. 722: 255-262. https://doi.org/10.1016/j.msea.2018.02.105.

Sabari, S., Andrade, D. G., Leitão, C., Simões, F., and Rodrigues, D. M. 2023. Influence of the Strain Hardening Behaviour on the Tensile and Compressive Response of Aluminium Auxetic Structures. Composite Structures. 305: 116472. https://doi.org/10.1016/j.compstruct.2022.116472.

Zhang, J., Lu, G., Ruan, D., and Wang, Z. 2018. Tensile Behavior of an Auxetic Structure: Analytical Modeling and Finite Element Analysis. International Journal of Mechanical Sciences. 136: 143-154. https://doi.org/10.1016/j.ijmecsci.2017.12.029.

Lv, W., Dong, L., and Li, D. 2023. A Novel Metamaterial with Individually Adjustable and Sign-switchable Poisson’s Ratio. European Journal of Mechanics - A/Solids. 97: 104851. https://doi.org/10.1016/j.euromechsol.2022.104851.

Vyavahare, S., Teraiya, S., and Kumar, S. 2023. FDM Manufactured Auxetic Structures: An Investigation of Mechanical Properties using Machine Learning Techniques. International Journal of Solids and Structures 265-266: 112126. https://doi.org/10.1016/j.ijsolstr.2023.112126.

Ling, B., Wei, K., Qu, Z., and Fang, D. 2021. Design and Analysis for Large Magnitudes of Programmable Poisson’s Ratio in a Series of Lightweight Cylindrical Metastructures. International Journal of Mechanical Sciences. 195: 106220. https://doi.org/10.1016/j.ijmecsci.2020.106220.

Li, J., Zhang, Z.-Y., Liu, H.-T., and Wang, Y.-B. 2022. Design and Characterisation of Novel bi-directional Auxetic Cubic and Cylindrical Metamaterials. Composite Structures. 299: 116015. https://doi.org/10.1016/j.compstruct.2022.116015.

Hamzehei, R., Rezaei, S., Kadkhodapour, J., Anaraki, A. P., and Mahmoudi, A. 2020. 2D Triangular Anti-trichiral Structures and Auxetic Stents with Symmetric Shrinkage Behavior and High Energy Absorption. Mechanics of Materials. 142: 103291. https://doi.org/10.1016/j.mechmat.2019.103291.

Hedayati, R., Güven, A., and van der Zwaag, S. 2021. 3D gradient auxetic soft mechanical metamaterials fabricated by additive manufacturing. Applied Physics Letters. 118(14): 141904. AIP Publishing. https://doi.org/10.1063/5.0043286.

Huang, J., and Yang, N. 2023. Composite Compression–twist Structures Made by Additive Manufacturing for Energetic Absorption with Controllable Inner Friction. Composite Structures. 303: 116349. https://doi.org/10.1016/j.compstruct.2022.116349.

Tan, X., Chen, S., Wang, B., Tang, J., Wang, L., Zhu, S., Yao, K., and Xu, P. 2020. Real-time Tunable Negative Stiffness Mechanical Metamaterial. Extreme Mechanics Letters. 41: 100990. https://doi.org/10.1016/j.eml.2020.100990.

Zhang, H., Lin, G., and Sun, W. 2023. Structural Design and Tunable Mechanical Properties of Novel Corrugated 3D Lattice Metamaterials By Geometric Tailoring. Thin-Walled Structures. 184: 110495. https://doi.org/10.1016/j.tws.2022.110495.

Yang, N., Deng, Y., Zhao, S., Song, Y., Huang, J., and Wu, N. 2021. Mechanical Metamaterials with Discontinuous and Tension/Compression‐Dependent Positive/Negative Poisson’s Ratio. Advanced Engineering Materials. 24(3): 2100787. https://doi.org/10.1002/adem.202100787.

Al-Waily, M., Raad, H., and Njim, E. K. 2022. Free Vibration Analysis of Sandwich Plate-Reinforced Foam Core Adopting Micro Aluminum Powder. Physics and Chemistry of Solid State. 23(4): 659-668. https://doi.org/10.15330/pcss.23.4.659-668.

Njim, E. K., Bakhy, S. H., and Al-Waily, M. 2022. Experimental and Numerical Flexural Analysis of Porous Functionally Graded Beams Reinforced by (Al/Al2O3) Nanoparticles. International Journal of Nanoelectronics and Materials. 15: 91-106.

Njim, E. K. Bakhy, S. H., and Al-Waily 2022. Analytical and Numerical Investigation of Buckling Behavior of Functionally Graded Sandwich Plate with Porous Core. Journal of Applied Science and Engineering. 25(2). https://doi.org/10.6180/jase.202204_25(2).0010.

Njim, E. K., Bakhy, S. H., and Al-Waily, M. 2021. Analytical and Numerical Investigation of Free Vibration Behavior for Sandwich Plate with Functionally Graded Porous Metal Core. Pertanika Journal of Science and Technology. 29(3). https://doi.org/10.47836/pjst.29.3.39.

Njim, E. K., Bakhy, S. H., and Al-Waily, M. 2021. Analytical and Numerical Free Vibration Analysis of Porous Functionally Graded Materials (FGPMs) Sandwich Plate using Rayleigh-Ritz Method. Archives of Materials Science and Engineering. 1(110): 27-41. https://doi.org/10.5604/01.3001.0015.3593.

Njim, E. K. Bakhy, S. H., and Al-Waily, M 2022. Analytical and Numerical Flexural Properties of Polymeric Porous Functionally Graded (PFGM) Sandwich Beams. Journal of Achievements in Materials and Manufacturing Engineering. 110(1): 5-10. https://doi.org/10.5604/01.3001.0015.7026.

Xin Wang et al. 2020. Enhanced Vibration and Damping Characteristics of Novel Corrugated Sandwich Panels with Polyurea-metal Laminate Face Sheets. Composite Structures. 251. https://doi.org/10.1016/j.compstruct.2020.112591.

Xin Wang et al. 2020. Dynamic Response of Clamped Sandwich Beams with Fluid-filled Corrugated Cores. International Journal of Impact Engineering. 139. https://doi.org/10.1016/j.ijimpeng.2020.103533.

Dingkang Chen, Huan Zi, Yinggang Li and Xunyu Li. 2021. Low Frequency Ship Vibration Isolation using the Band Gap Concept of Sandwich Plate-type Elastic Metastructures, Ocean Engineering. 235. https://doi.org/10.1016/j.oceaneng.2021.109460.

Jin, Y., Zeng, S., Wen, Z., He, L., Li, Y., and Li, Y. 2022. Deep-Subwavelength Lightweight Metastructures for Low-Frequency Vibration Isolation. Materials & Design. 215: 110499. https://doi.org/10.1016/j.matdes.2022.110499.

Wang, X., Li, X., Yu, R.-P., Ren, J.-W., Zhang, Q.-C., Zhao, Z.-Y., Ni, C.-Y., Han, B., and Lu, T. J. 2020. Enhanced Vibration and Damping Characteristics of Novel Corrugated Sandwich Panels with Polyurea-metal Laminate Face Sheets. Composite Structures. 251: 112591. https://doi.org/10.1016/j.compstruct.2020.112591.

Muhammad, Lim, C. W., Yaw, Z., and Chen, Z. 2022. Periodic and Aperiodic 3-D Composite Metastructures with Ultrawide Bandgap for Vibration and Noise Control. Composite Structures. 287: 115324. https://doi.org/10.1016/j.compstruct.2022.115324.

Yi Zhang, Long Sun, Xin Ren, Xiang Yu Zhang, Zhi Tao, Yi Min Xie 2022. Design and Analysis of an Auxetic Metamaterial with Tuneable Stiffness. Composite Structures. 281. https://doi.org/10.1016/j.compstruct.2021.114997.

Ting Ting Huang, Xin Ren, Yi Zeng, Yi Zhang, Chen Luo, Xiang Yu Zhang and Yi Min Xie 2021. Based on Auxetic Foam: A Novel Type of Seismic Metamaterial for Lamb Waves. Engineering Structures. 246. https://doi.org/10.1016/j.engstruct.2021.112976.

Fang, X., Sheng, P., Wen, J., Chen, W., and Cheng, L. 2022. A Nonlinear Metamaterial Plate for Suppressing Vibration and Sound Radiation. International Journal of Mechanical Sciences. 228: 107473. https://doi.org/10.1016/j.ijmecsci.2022.107473.

Song, Y., Wen, J., Tian, H., Lu, X., Li, Z., and Feng, L. 2020. Vibration and Sound Properties of Metamaterial Sandwich Panels with Periodically Attached Resonators: Simulation and Experiment Study. Journal of Sound and Vibration. 489: 115644. https://doi.org/10.1016/j.jsv.2020.115644.

Zhang, X., Yu, H., He, Z., Huang, G., Chen, Y., and Wang, G. 2021. A Metamaterial Beam with Inverse Nonlinearity for Broadband Micro-vibration Attenuation. Mechanical Systems and Signal Processing. 159: 107826. https://doi.org/10.1016/j.ymssp.2021.107826.

Yu, M., Fang, X., and Yu, D. 2021. Combinational Design of Linear and Nonlinear Elastic Metamaterials. International Journal of Mechanical Sciences. 199: 106422. https://doi.org/10.1016/j.ijmecsci.2021.106422.

Li, Y., Yan, S., and Li, H. 2022. Wave Propagation of 2D Elastic Metamaterial with Rotating Squares and Hinges. International Journal of Mechanical Sciences. 217: 107037. https://doi.org/10.1016/j.ijmecsci.2021.107037.

An, N.; Su, X.; Zhu, D. and Tomovic, M.M. 2022. Influence of Defects on In-Plane Dynamic Properties of Hexagonal Ligament Chiral Structures. Sustainability. 14: 11432. https://doi.org/10.3390/su141811432.

Peng Sheng, Xin Fang, Li Dai, Dianlong Yu and Jihong Wen 2023. Synthetical Vibration Reduction of the Nonlinear Acoustic Metamaterial Honeycomb Sandwich Plate. Mechanical Systems and Signal Processing. 185. https://doi.org/10.1016/j.ymssp.2022.109774.

Jawad. K. Oleiwi1, Nesreen D.l F., Marwah M. A., et al. 2023. Laser Treatment Effect on Fatigue Characterizations for Steel Alloy Beam Coated with Nanoparticles. International Journal of Nanoelectronics and Materials. 16: 105-119.

Al-Shablle, M., Njim, E. K., Jweeg, M. J., and Al-Waily, M. 2023. Free Vibration Analysis of Composite Face Sandwich Plate Strengthens by Al2O3 and SiO2 Nanoparticles Materials. Diagnostyka. 24(2): 1-9. https://doi.org/10.29354/diag/162580.

Jweeg, M. J., Njim, E. K., Abdullah, O. S., Al-Shammari, M. A., Al-Waily, M., and Bakhy, S. H. 2023. Free Vibration Analysis of Composite Cylindrical Shell Reinforced with Silicon Nanoparticles: Analytical and FEM Approach. Physics and Chemistry of Solid State. 24(1): 26-33. https://doi.org/10.15330/pcss.24.1.26-33.

Yanbin Wang and Haitao Liu. 2022. Z-beam and S-beam Optimised Mechanical Metamaterials with Enhanced Mechanical Properties. Composite structures. 296. https://doi.org/10.1016/j.compstruct.2022.115939.

Lulu Wei, Xuan Zhao, Qiang Yu and Guohua Zhu. 2020. A Novel Star Auxetic Honeycomb with Enhanced In-Plane Crushing Strength. Thin-Walled Structures. 149. https://doi.org/10.1016/j.tws.2020.106623.

Jinqiang Li, Xinlei Fan and Fengming Li 2020. Numerical and Experimental Study of a Sandwich-like Metamaterial Plate For Vibration Suppression. Composite Structures. 238. https://doi.org/10.1016/j.compstruct.2020.111969.

Downloads

Published

2023-08-21

Issue

Section

Science and Engineering

How to Cite

A RECENT REVIEW OF THE SANDWICH-STRUCTURED COMPOSITE METAMATERIALS: STATIC AND DYNAMIC ANALYSIS. (2023). Jurnal Teknologi, 85(5), 133-149. https://doi.org/10.11113/jurnalteknologi.v85.20282