PARAMETER OPTIMIZATION FOR HIGH-SPEED END MILLING ON INCONEL 718 USING UNCOATED CARBIDE TOOL

Authors

  • Muhammad Juzaili Hisam Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Mohd Azlan Suhaimi Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia http://orcid.org/0000-0003-2115-2030
  • Safian Sharif Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Erween Abd Rahim Faculty of Mechanical Engineering and Manufacturing, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Johor Bahru, Malaysia
  • Amrifan S Mohruni Faculty of Mechanical Engineering, Universitas Sriwijaya, 30128, Kota Palembang, Sumatera Selatan, Indonesia
  • Zhuang Kejia School of Mechanical and Electronic Engineering, Wuhan University of Technology, 430070, Wuhan, Hubei, P.R. China

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20297

Keywords:

High-speed machining, Inconel 718, Optimization, Uncoated carbide tool, Tool wear

Abstract

Inconel 718 with exceptional characteristics is well known as a difficult-to-cut material especially during high-speed machining process. High cutting temperature further damaged the tool which results in low tool life. To overcome this matter, optimization on cutting parameters needed to be conducted in order to achieve longer tool life and desired cutting finish. Sets of optimized parameters consists of different cutting speed and feed rate were listed out through Research Surface Method (RSM) software which the effects and the output values were observed through high-speed end milling work on a 100 x 100 x 150 mm Inconel 718 block. The lowest cutting force and surface roughness at 776.04 N and 0.195 µm were recorded at the lowest parameter combination, while the highest results of 1,322.89 N and 0.478 µm were obtained from the highest parameter combination. Higher cutting parameter further deteriorate the cutting tool due to high heat and drastic reduction in tool life was observed, from 32 minutes of cutting process to only 2 minutes and 40 seconds. The results were further investigated through optimization work and cutting speed is the dominant factor that affected the results. The final model suggested that by using uncoated carbide tools, the lowest cutting speed and feed rate of 50 m/min and 0.05 mm/tooth can be implemented to obtain the desired cutting responses.

References

R. Arunachalam, M.A. Mannan. 2000. Machinability of Nickel-based High Temperatures Alloys. Mach. Sci. Technol. 4(1): 127-168.

E. O. Ezugwu, I. R. Pashby. 1992. High Speed Milling of Nickel-based Superalloys. J. Mater. Process. Technol. 33: 429-437.

A. H. Musfirah, J. A. Ghani, C. H. Che Haron, M. S. Kasim. 2015. Effect of Cutting Parameters on Cutting Zone in Cryogenic High Speed Milling of Inconel 718 Alloy. Jurnal Teknologi. 77(27): 1-7.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

H. R. Krain, A. R. C. Sharman, K. Ridgway. 2007. Optimisation of Tool Life and Productivity when End Milling Inconel 718TM. J. of Mater. Process. Technol. 189: 153-161.

A. Jawaid, S. Koksal, S. Sharif. 2001. Cutting Performance and Wear Characteristics of PVD Coated and Uncoated Carbide Tools in Face Milling Inconel 718 Aerospace Alloy. J. Mater. Process. Technol. 77: 278-284.

Y. W. Wang, J. F. Li, Z. M. Li, T. C. Ding, S. Zhang. 2011. Experimental Investigation on Tool Wear When End-milling Inconel 718 with Coated Carbide Inserts. Adv. Mater. Resear. 188: 410-415.

Doi: 10.4028/www.scientific.net/AMR.188.410.

Damir Grguraš, Matjaž Kern, Franci Pušavec. 2018. Suitability of the Full Body Ceramic end Milling Tools for High Speed Machining of Nickel based Alloy Inconel 718. Procedia CIRP. 77: 630-633.

Guoqing Zhang, Jingjie Zhang, Guanghui Fan, Chonghai Xu, Jin Du. 2023. The Effect of Chip Formation on the Cutting Force and Tool Wear in High-speed Milling Inconel 718. The Int. J. of Adv. Manuf. Technol. 127: 335-348.

D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquère. V. Zerrouki, J. Vigneau. 2004. A Review of Developments Towards Dry and High Speed Machining of Inconel 718 Alloy. 44: 439-456.

Andrea De Bartolomeis, Stephen T Newman, Alborz Shokarni. 2021. High-speed Milling Inconel 718 using Electrostatic Minimum Quantity Lubrication (EMQL). Procedia CIRP. 101: 354-357.

A. H. Musfirah, J. A. Ghani, C. H. Che Haron. 2016. Effect of Cutting Speed on the Carbide Cutting Tool in Milling Inconel 718 Alloy. J. Mater. Res. 34(13): 1885-1892.

G. Liu, N. He, Z. L. Man, L. Li. 2004. Cutting Forces in the Milling of Inconel 718. Key Eng. Mater. 259-260: 824-828.

Mohan Reddy Moola, Viviana Yong Chai Nie. 2019. Evaluation of Surface Roughness and Tool Wear in High Speed Machining of Inconel 718. Mater. Sci. Forum. 943: 66-71.

Doi: 10.4028/www.scientific.net/MSF.943.66.

Mohd Ali, Afifah and Adesta, Erry Yulian Triblas and Agusman, Delvis and Mohamad Badari, Siti Norbahiyah and Al Hazza, Muataz Hazza Faizi. 2011. Development of Surface Roughness Prediction Model for High Speed end Milling of Hardened Tool Steel. Asian Journal of Scientific Research. 4(3): 255-263.

SECO Tools. XOEX10T308FR-E05 H15 Tool Insert Specifications.

https://www.secotools.com/article/p_02823843?language=en.

S. Sharif, E. A. Rahim. 2007. Performance of Coated and Uncoated Carbide Tools when Drilling Titanium Alloy (Ti-6Al-4V). Journal of Materials Processing Technology. 185(1-3): 72-76.

E. A. Rahim, S. Sharif. 2006. Investigation on Tool Life and Surface Integrity when Drilling Ti-6Al-4V and Ti-5Al-4V-Mo/Fe. JSME International Journal Series C. 49(2): 340-345.

Rival. 2014. Machinability Study of Coated and Uncoated Carbide Tools in Drilling Inconel 718. PhD Thesis. Universiti Teknologi Malaysia.

Sharman A., Dewes R. C. and Aspinwall D. K. 2001. Tool Life when High Speed Ball Nose End Milling Inconel 718. J. Mater. Process Technol. 118(1-3): 29-35.

Alborz Shokrani, Vimal Dhokia, Stephen T Newman. 2017. Hybrid Cooling and Lubricating Technology for CNC Milling of Inconel 718 Nickel Alloy. Procedia Manufacturing. 11: 625-632.

Pereira O., Urbikain G., Rodríguez A., Fernández-Valdivieslo A., Calleja A., Ayesta, I. López de lacalle N. 2017. Internal Cryolubrication Approach for Inconel 718 Milling. Procedia Manufacturing. 13: 89-93.

Li Qiang, Gong Ya-dong, Cai Ming, Liu Ming-jun. 2017. Research on Surface Integrity in Milling Inconel 718 Superalloy. Int. J. Adv. Manuf. Technol. 92: 1449-1463.

Gleiton de Paula Oliveira, Maria Cindra Fonseca, Anna Carla Araujo. 2017. Analysis of Residual Stress and Cutting Force in End Milling of Inconel 718 using Conventional Flood Cooling and Minimum Quantity Lubrication. Int. J. Adv. Manuf. Technol. 92: 3265-3272.

M. Grzenda, A. Bustillo. 2013, The Evaolutionary Development of Roughness Prediction Models. Applied Soft Computing. 13(5): 2913-2922.

E. O. Ezugwu, Z. M. Wang, C. J. Okeke. 1999. Tool Life and Surface Finish when Machining Inconel 718 with PVD and CVD-coated Tools. Tribol. Trans. 42(2): 353-360.

J. X. Deng, L. L. Liu, J. H. Liu. 2005. Failure Mechanisms of TiB2 Particle and SiC Whisker Reinforced Al2O3 Ceramic Cutting Tools when Machining Nickel-based Alloys. Int. J. Mach. Tools Manufact. 45: 1393.

A. Sharman, R. C. Dewes, D. K. Aspinwall. 2007. Tool Life when High Speed Ball Nose End Milling of Inconel 718TM. J. Mater. Process. Technol. 118: 29-35.

M. Alauddin, M. A. Mazid, M. A. El-Baradise, M. S. J. Hashmi. 1998. Cutting Forces in the End Milling of Inconel 718. J. Mater. Process. Technol. 77: 153-159.

M. Rahman, W. K. H. Seaha, T. T. Teo. 1997. The Machinability of Inconel 718. J. Mater. Process. Technol. 63: 199-204.

D. C. Montgomery. 1997. Design and Analysis of Experiments. 4th ed. Wiley, New York.

Downloads

Published

2023-11-18

Issue

Section

Science and Engineering

How to Cite

PARAMETER OPTIMIZATION FOR HIGH-SPEED END MILLING ON INCONEL 718 USING UNCOATED CARBIDE TOOL . (2023). Jurnal Teknologi (Sciences & Engineering), 86(1), 73-81. https://doi.org/10.11113/jurnalteknologi.v86.20297