SIMULATION OF OPTIMAL MIX OF SIO2-TIO2-AL2O3 NANO ADDITIVES FOR THE MINIMAL WEAR AND COEFFICIENT OF FRICTION OF LUBRICANT USING FUZZY LOGIC

Authors

  • Sankar E Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
  • Duraivelu K Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India https://orcid.org/0000-0003-1853-6965

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20402

Keywords:

Wear, friction, nanoparticle, lubricant, fuzzy logic

Abstract

Nano-particles of oxides of various metals are typically added with the base lubricants for enhancing the tribological properties, especially the wear and coefficient of friction of the lubricants.  However, it is required to determine the optimum proportion of mix of the nano-additives in order to obtain the desirable characteristics gained through the addition of various oxides of metals mixed with the lubricants. This paper deals with the application of fuzzy logic to simulate the various proportions of a mix of three nano-additives of SiO2, Al2O3 and TiO2 with the corresponding predicted values of tribological characteristics of wear and coefficient of friction. The limited number of outcomes obtained from a full factorial design of experiments carried out with these three nano-additives at three different levels of mixing, are used as inputs to the fuzzy logic simulation. This approach facilitates simulating as many combinations of nano-additives as possible with the base lubricant oil along with the predicted output of characteristics of interest, which otherwise will be cumbersome to carry out the experiments for all the combinations of mix of additives.

References

Mortier, Roy M., Fox, Malcolm F., Orszulik & Stefan T. 2010. Chemistry and Technology of Lubricants. Springer Netherlands.

https://doi.org/10.1023/b105569.

Duraivelu K. 2022. Digital Transformation in Manufacturing Industry-A Comprehensive Insight. Materials Today: Proceedings. 68(6): 1825-1829.

https://doi.org/10.1016/j.matpr.2022.07.409.

Joly-Pottuz, L., Dassenoy, F., Vacher, B., Martin, J. M. & Mieno, T. 2004. Ultralow Friction and Wear Behaviour of Ni/Y-based Single Wall Carbon Nanotubes (SWNTs), Tribology International. 37(11-12): 1013-1018.

https://doi.org/10.1016/j.triboint.2004.07.019.

Da Jiao, Shaohua Zheng, Yingzi Wang, Ruifang Guan & Bingqiang Cao. 2011. The Tribology Properties of Alumina/silica Composite Nanoparticles as Lubricant Additives. Applied Surface Science. 257(13): 5720-5725. https://doi.org/10.1016/j.apsusc.2011.01.084.

Zhaolin Liu, Jim Yang Lee, Weixiang Chen, Ming Han & Leong Ming Gan. 2004. Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles, Langmuir. 20(1): 181-187. https://doi.org/10.1021/la035204i.

Hernández Battez, A., González, R., Viesca, J. L., E. Fernández, J, E., Díaz Fernández, J. M., Machado, A., Chou, R. & Riba, J. 2008. CuO, ZrO2 and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants, Wear. 265(3-4): 422-428. https://doi.org/10.1016/j.wear.2007.11.013.

Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, H., Sloan, J., Hutchison, L. & Tenne, R. 1999. Inorganic Fullerene-like Material as Additives to Lubricants: Structure–function Relationship. Wear. 225-229(2): 975-982. https://doi.org/10.1016/S0043-1648(99)00040-X.

Zhang, J., Lin, J., Song, H, S., Elssfah, E. M., Liu, S. J., Luo, J. J., Ding, X. X., Tang, C. & Qi, S. R. 2006. Bulk-quantity Fast Production of Al4B2O9/Al18B4O33 Single-crystal Nanorods by a Novel Technique. Materials Letters. 60(27): 3292-3295. https://doi.org/10.1016/j.matlet.2006.03.006.

Wu, Y. Y., Tsuia, W. C. & Liub, T. C. 2007. Experimental Analysis of Tribological Properties of Lubricating Oils with Nanoparticle Additives. Wear. 262(7-8): 819-825.

https://doi.org/10.1016/j.wear.2006.08.021.

Robert Silverstein, Leslie R. & Rudnick 2017. Additives for Grease Applications: Lubricant Additives. 3rd Edition. CRC Press.

De‐Xing Peng, Cheng‐Hsien Chen, Yuan Kang, Yeon‐Pun Chang & Shi‐Yan Chang. 2010. Size Effects of SiO2 Nanoparticles as Oil Additives on Tribology of Lubricant. Industrial Lubrication and Tribology. 62(2): 111-120. https://doi.org/10.1108/00368791011025656.

Zhou Xiaodong, Fu Xun, Shi Huaqiang & Hu Zhengshui. 2006. Lubricating properties of Cyanex 302-modified MoS2 Microspheres in Base Oil 500SN. Lubrication Science. 19(1): 71-79. https://doi.org/10.1002/ls.32.

M. Gulzar, H. H. Masjuki, M. A. Kalam, M. Varman, N. W. M. Zulkifli, R. A. Mufti & Rehan Zahid. 2016. Tribological Performance of Nanoparticles as Lubricating Oil Additives. J Nanopart Res. 18(223). Doi: 10.1007/s11051-016-3537-4.

Sethuramalingam Pillay Darminesh, Nor Azwadi Che Sidik, Najafi, G., Rizalman Mamat, Tan Lit Ken & Yutaka Asako. 2017. Recent Development on Biodegradable Nanolubricant: A Review. International Communications in Heat and Mass Transfer. 86: 159-165.

https://doi.org/10.1016/j.icheatmasstransfer.2017.05.022.

Rashed, A. & Nabhan, A. 2018. Effects of TiO2 and SiO2 Nano Additive to Engine Lubricant Oils on Tribological Properties at Different Temperatures, Rome Italy. 20(10): Part XVIII.

Xiaohong Li, Zhi Cao, Zhijun Zhang & Hongxin Dang. 2006. Surface-modification In Situ of nano-SiO2 and Its Structure and Tribological Properties. Applied Surface Science. 252: 7856-7861. Doi:10.1016/j.apsusc.2005.09.068.

Peng, D. X., Kang, Y., Hwang, R. M., Shyr, S. S. & Chang, Y. P. 2009. Tribological Properties of Diamond and SiO2 Nanoparticles Added in Paraffin. Tribology International. 42(6): 911-917. https://doi.org/10.1016/j.triboint.2008.12.015.

Muhammad Ilman Hakimi Chua Abdullah, Mohd Fadzli Bin Abdollah, Hilmi Amiruddin, Noreffendy Tamaldin & Nur Rashid Mat Nuri. 2013. Optimization of Tribological Performance of hBN/AL2O3Nanoparticles as Engine Oil Additives. Procedia Engineering. 68: 313-319. Doi: 10.1016/j.proeng.2013.12.185.

Steven, E., McElwain, Thierry A., Blanchet, Linda S. Schadler & Gregory Sawyer, W. 2008. Effect of Particle Size on the Wear Resistance of Alumina-Filled PTFE Micro- and Nanocomposites. Tribology Transactions. 51: 247-253. https://doi.org/10.1080/10402000701730494.

Hemanth Rajashekaraiah, Sekar Mohan, Pramoda Kumari Pallathadka & Suresha Bhimappa. 2014. Dynamic Mechanical Analysis and Three-body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites. Advances in Tribology. http://dx.doi.org/10.1155/2014/210187.

Wenzhen Xia, Jingwei Zhao, Hui Wu, Xianming Zhao, Xiaoming Zhang, Jianzhong Xu, Sihai Jiao & Zhengyi Jiang. 2017. Effects of Oil-in-water based Nanolubricant Containing TiO2 Nanoparticles in Hot Rolling of 304 Stainless Steel. Procedia Engineering. 207: 1385-1390.

https://doi.org/10.1016/j.proeng.2017.10.901.

Shashikant, B., Dhokate & Mali, V. P. 2016, Tribological Properties of Al2O3 Nanoparticles Added in SN500 Base Oil. International Journal for Scientific Research & Development. 4(6): 165-167.

Frank, T. Hong, Ameneh Schneider & Mani Sarathy, S. 2020. Enhanced Lubrication by Core-shell TiO2 Nanoparticles Modified with Gallic Acid Ester. Tribology International. 146: 106263. https://doi.org/10.1016/j.triboint.2020.106263.

Busse, L., Peter, K., Karl, C. W., Geisler, H. & Klüppel, M. 2011. Reducing Friction with Al2O3/SiO2-nanoparticles in NBR. Wear. 271(7-8): 1066-1071.

https://doi.org/10.1016/j.wear.2011.05.017.

De-Xing Peng, Cheng-Hsien Chen, Yuan Kang, Yeon-Pun Chang & Shi-Yan Chang. 2010 Size Effects of SiO2 Nanoparticles as Oil Additives on Tribology of Lubricant. Industrial Lubrication and Tribology. 62(2): 111-120. http://dx.doi.org/10.1108/00368791011025656.

Harshwardhan, H., Patil, Chavan, D. S. & Pise, A. T. 2013. Tribological Properties of SiO2 Nanoparticles Added in SN-500 Base Oil. International Journal of Engineering Research & Technology. 2(5): 763-768.

Haiyan Li, Shuang Li, Feibiao Li, Zhike Li & Huaiyuan Wang. 2018. Fabrication of SiO2 Wrapped Polystyrene Microcapsules by Pickering Polymerization for Self-Lubricating Coatings. Journal of Colloid and Interface Science. 528: 92-99. ttps://doi.org/10.1016/j.jcis.2018.05.081.

Sankar, E. & Duraivelu, K. 2022. The Effect of SiO2-Al2O3-TiO2 Nanoparticle Additives on Lubrication Performance: Evaluation of Wear and Coefficient of Friction. Materials Today: Proceedings. 68(6): 2387-2392.

https://doi.org/10.1016/j.matpr.2022.09.107.

Mohammad Naimi & Hooman Tahayori. 2020. Centroid of Polygonal Fuzzy Sets. Applied Soft Computing. 95: 106519-534. https://doi.org/10.1016/j.asoc.2020.

Ying Ming Wang. 2009. Centroid Defuzzification and the Maximimizing Set and Minimizing Set Ranking based on Alpha Level Sets. Computers and Industrial Engineering. 57(1): 28-236. https://doi.org/10.1016/j.cie.2008.11.014.

Sankar, E. & Duraivelu, K. 2023. Evaluation of some Thermo-physical Properties of SN500 Lubrication Oil Blended with SiO2, Al2O3 and TiO2 Nano Additives using Fuzzy Logic. Acta Mechanica et Automatica.

Downloads

Published

2023-11-18

Issue

Section

Science and Engineering

How to Cite

SIMULATION OF OPTIMAL MIX OF SIO2-TIO2-AL2O3 NANO ADDITIVES FOR THE MINIMAL WEAR AND COEFFICIENT OF FRICTION OF LUBRICANT USING FUZZY LOGIC. (2023). Jurnal Teknologi, 86(1), 125-133. https://doi.org/10.11113/jurnalteknologi.v86.20402