• Audrey Huong Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
  • Kim Gaik Tay Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
  • Kok Beng Gan Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Xavier Ngu Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia




Decision Support, myocardial infarction, healthcare, network design, optimization


The conventional means of myocardial infarction (MI) detection using a 12-lead electrocardiogram (ECG) system include a pretrained network and machine learning interpretation of the complex ECG signals. They are computationally inefficient and demand high-performance hardware. Here, for the first time, we introduce an effective framework (MI-OptNet) using the particle swarm optimization model (PSO) in the design of a lightweight hybrid network combining convolutional neural network (CNN)-long short terms memory (LSTM) for MI and normal ECG detection. We optimized important design and training parameters based on limb leads’ signals and identified leads III and VI as the best ECG leads for the task based on their high classification performance ranging between 80 – 90 %, suggesting that they may provide more information about MI than the others. The other strategy of fusing the scores from all models at the decision level achieved the best result with a 10 % increase in the evaluated metrics. Our findings support the flexibility and adaptability of our framework for the design process using minimal computer efforts. We concluded that this approach may be used for other classification problems to assist engineers and designers in efficient decision-making and to solve complex signal classification and recognition problems.


World Health Organization. 2019. WHO Reveals Leading Causes of Death and Disability Worldwide 2000-2019. [Online] Available at https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019.html [Accessed on 28 June 2023].

Centers for Disease Control and Prevention. 2022. Myocarditis and Pericarditis After mRNA COVID-19 Vaccination. [Online] Available at https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/myocarditis.html [Accessed on 12 June 2023].

Schneider, R. R., & Seckler, S. G. 1981. Evaluation of Acute Chest Pain. Med. Clin. N. 65(1): 53-66. Doi: https://doi.org/10.1016/S0025-7125(16)31539-5.

Ghani, F., Wu, A. H. B., Graff, L., Petry, C., Armstrong, G., Prigent, F., Brown, M. 2000. Role of Heart-Type Fatty Acid-binding Protein in Early Detection of Acute Myocardial Infarction, Clin. Chem. 46(5): 718-719. Doi: https://doi.org/10.1093/clinchem/46.5.718.

Feng, Y., Geng, S., Chu, J., Fu, Z., & Hong, S. 2022. Building and Training a Deep Spiking Neural Network for ECG Classification. Biomed. Signal Process Control. 77(103749).

Doi: https://doi.org/10.1016/j.bspc.2022.103749.

Xu, P., Liu, H., Xie, X., Zhou, S., Shu, M., & Wang Y. 2022. Interpatient ECG Arrhythmia Detection by Residual Attention CNN. Comput. Math. Methods Med. 2022: 1-13.

Doi: https://doi.org/10.1155/2022/2323625.

Chatterjee, S., Thakur, R. S., Yadav, R. N., Gupta, L., & Raghuvanshi, D. K. 2020. Review of Noise Removal Techniques in ECG Signals. IET Signal Process. 14(9): 569-590.

Doi: https://doi.org/10.1049/iet-spr.2020.0104.

Xu, B., Liu, R., Shu, M., Shang, X., & Wang, Y. 2021. An ECG Denoising Method based on the Generative Adversarial Residual Network. Comput. Math. Methods Med. 2021: 1-23. Doi: https://doi.org/10.1155/2021/5527904.

Ma, S., Cui, J., Xiao, W., & Liu, L. 2022. Deep Learning-based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms. Comput. Intell. Neurosci. 2022: 1-17. Doi: https://doi.org/10.1155/2022/1577778.

Ingale, M., Cordeiro, R., Thentu, S., Park, Y., & Karimian, N. 2020. ECG Biometric Authentication: A Comparative Analysis. IEEE Access. 8: 117853-117866. Doi: https://doi.org/10.1109/ACCESS.2020.3004464.

Hamil, H., Zidelmal, Z., Azzaz, M. S., Sakhi, S., Kaibou, R., Djilali, S., & Abdeslam, D. O. 2022. Design of a Secured Telehealth System based on Multiple Biosignals Diagnosis and Classification for IoT Application. Expert Syst. 39(4): 1-27. Doi: https://doi.org/10.1111/exsy.12765

Chang, R. K. 2022. Resting 12‑lead ECG Tests Performed by Patients at Home Amid the COVID-19 Pandemic — Results from the First 1000 Patients. J. Electrocardiol. 73(2022): 108-112. Doi: https://doi.org/10.1016/j.jelectrocard.2022.06.006.

Al Rahhal, M. M., Bazi, Y., AlHichri, H., Alajlan, N., Melgani, F. & Yager, R. R. 2016. Deep Learning Approach for Active Classification of Electrocardiogram Signals. Inf. Sci. (NY). 345: 340-354. Doi: https://doi.org/10.1016/j.ins.2016.01.082.

Li, W., Tang, Y. M., Yu, K. M., & To, S. 2022. SLC-GAN: An Automated Myocardial Infarction Detection Model based on Generative Adversarial Networks and Convolutional Neural Networks with Single-lead Electrocardiogram Synthesis. Inf. Sci. (NY). 589: 738-750.

DoI: https://doi.org/10.1016/j.ins.2021.12.083.

Rai, H. M., & Chatterjee, K. 2022. Hybrid CNN-LSTM Deep Learning Model and Ensemble Technique for Automatic Detection of Myocardial Infarction using Big ECG Data. Appl. Intell. 52: 5366-5384. Doi: https://doi.org/10.1007/s10489-021-02696-6.

Park, Y., Yun, I. D., & Kang, S. H. 2019. Preprocessing Method for Performance Enhancement in CNN-based STEMI Detection from 12-lead ECG. IEEE Access. 7: 99964-99977. Doi: https://doi.org/10.1109/ACCESS.2019.2930770.

Śmigiel, S., Pałczyński, K., & Ledziński, D. 2021. Deep Learning Techniques in the Classification of ECG Signals using R-peak Detection based on the PTB-XL Dataset. Sensors. 21(8174): 1-18. Doi: https://doi.org/10.3390/s21248174.

Bassiouni, M., Hegazy, I., Rizk, N., El-Dahshan, S. A., & Salem, A. M. 2022. Deep Learning Approach based on Transfer Learning with Different Classifiers for ECG Diagnosis. Int. J. Intell. Comput. Inf. Sci. 22(2): 44-62. Doi: https://doi.org/10.21608/ijicis.2022.105574.1137.

Kavak, S., Chiu, X. D., Yen, S. J., & Chen, M. Y. C. 2022. Application of CNN for Detection and Localization of STEMI using 12-lead ECG Images. IEEE Access. 10: 38923-38930.

Doi: https://doi.org/10.1109/ACCESS.2022.3165966.

Manimekalai, K., & Kavitha, A. 2020. Deep Learning Methods in Classification of Myocardial Infarction by Employing ECG Signals. Indian J. Sci. Technol. 13(28): 2823-2832. DOI: https://doi.org/10.17485/IJST/v13i28.445.

Fatimah, B., Singh, P., Singhal, A., Pramanick, D., Pranav, S., & Pachori, R. B. 2021. Efficient Detection of Myocardial Infarction from Single Lead ECG Signal. Biomed. Signal Process Control. 68: 1-14. Doi: https://doi.org/10.1016/j.bspc.2021.102678.

Zhu, J., Lv, J., & Kong, D. 2022. CNN-FWS: A Model for the Diagnosis of Normal and Abnormal ECG with Feature Adaptive. Entropy. 24(471): 1-13.

Doi: https://doi.org/10.3390/e24040471.

Śmigiel, S., Pałczyński, K., & Ledziński, D. 2021. ECG Signal Classification using Deep Learning Techniques based on the PTB-XL Dataset. Entropy. 23(1121): 1-20. Doi: https://doi.org/10.3390/e23091121.

Gaziano, T., Reddy, K. S., Paccaud, F., Horton, S., & Chaturvedi, V. 2006. Disease Control Priorities in Developing Countries. 2nd ed. New York: Oxford University Press.

Gursoy, H. T., Dereagzi, S. F., Caliskan, U., Dogru, C. Y., Kulekci, F., Kaplan, Z., Bahtiyar, B., Al, A., & Ozeke, O. 2021. An Electrocardiographic Clue for Pseudo-myocardial Infarction due to Arterial Pulse–tapping Artifact: Aslanger’s Sign. J. Innov. Card. Rhythm Manag. 12: 4685-4687. Doi: https://doi.org/10.19102/icrm.2021.120904.

Pandey, R. K., Dahiya, A. K., Pandey, A. K., & Mandal, A. 2022. Optimized Deep Learning Model Assisted Pressure Transient Analysis for Automatic Reservoir Characterization. Pet Sci Technol. 40(6): 659-677. Doi: https://doi.org/10.1080/10916466.2021.2007122.

Naseri, H., Waygood, E. O. D., Wang, B., & Patterson, Z. 2023. Interpretable Machine Learning Approach to Predicting Electric Vehicle Buying Decisions. Transp. Res. Rec. 1-14. Doi: https://doi.org/10.1177/03611981231169533.

Lee, K. S., Lee, E., Choi, B., & Pyun, S. B. 2021. Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks. Diagnostics. 11(2): 1-15. Doi: https://doi.org/10.3390/diagnostics11020300

Al-Mansouri, L. A., Al-Obaidi, F. R., & Raheem Al-Humrani, A. H. 2019. Higher ST-Segment Elevation in Lead III than Lead II in Acute Inferior Myocardial Infarction can be a Predictor of Short-term Morbidity and Mortality. Iraqi J. M. S. 17(3&4): 168-174. Doi: https://doi.org/10.22578/IJMS.17.3-4.2.

Islam, M., Bhattacharjee, B., Chowdhury, M., Siddique, A. N., & Rezaul Karim, A. M. 2016. Outcome of Acute Myocardial Infarction Patients Admitted in a Tertiary. Med. Today. 28(1): 6-8. Doi: https://doi.org/10.3329/medtoday.v28i1.30960.

Strodthoff, N., Wagner, P., Schaeffter, T., & Samek, W. 2021. Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL. IEEE J. Biomed. Heal. Informatics. 25: 1519-1528.

Doi: https://doi.org/10.1109/JBHI.2020.3022989.

Mehari T., & Strodthoff, N. 2022. Self-supervised Representation Learning from 12-lead ECG Data. Comput. Biol. Med. 141(105114): 1-15. Doi: https://doi.org/10.1016/j.compbiomed.2021.105114.

Pałczyński, K., Śmigiel, S., Ledziński, D., & Bujnowski, S. 2022. Study of the Few-Shot Learning for ECG classification based on the PTB-XL dataset. Sensors. 22(3): 1-25. Doi: https://doi.org/10.3390/s22030904.






Science and Engineering

How to Cite

MI-OPTNET: AN OPTIMIZED DEEP LEARNING FRAMEWORK FOR MYOCARDIAL INFARCTION DETECTION. (2024). Jurnal Teknologi, 86(3), 115-125. https://doi.org/10.11113/jurnalteknologi.v86.20409