Phylogenetic Analysis of Eight Malaysian Pineapple Cultivars using a Chloroplastic Marker (rbcL gene)
DOI:
https://doi.org/10.11113/jt.v64.2041Keywords:
A. comosus, Malaysian pineapple, rbcL, phylogenetic, maximum parsimonyAbstract
To date, Malaysian pineapple cultivars has only been characterized morphologically. A more consistent and accurate method such as biomarker is highly crucial to distinguish and establish the genetic relationship between different cultivars. In this work, we conducted a phylogenetic analysis of eight Malaysian pineapple cultivars using a chloroplastic DNA biomarker, ribulose-bisphosphate carboxylase (rbcL) gene. The rbcL gene was isolated from genomic DNA, amplified and sequenced. The rbcL gene of Ananas comosus is approximately 1100 bp. From the multialignment of eight cultivars, the percentage of sequence similarity ranged from 71.1% to 94.98% and is highly conserved throughout the sequences. Phylogenetic analysis which is carried out using maximum parsimony method revealed that the eight Malaysian pineapple cultivars can be classified into two groups. The first group consist of Yankee and Gandul cultivars while Moris, Moris Bentanggur, Moris Gajah, N36, Josaphine and Sarawak falls under the second group. Bootstrap values in some branches are low which reflect the small number of informative characters (981 are conserved, 12 are potentially informative). Formation of several group or subclades is due to its similar genetic pattern, thus supporting this classification. This study confirmed that rbcL gene is a good indicator to determine the phylogenetic relationship distinguishing the Malaysian pineapple cultivars.
References
Botella, J. R., and Smith, M. 2008. Genomics of Pineapple, Crowning The King of Tropical Fruits. In P. H. Moore, and Ming, R. (Ed.), Genomics of Tropical Crop Plants. 1: 441–451. New York: Springer.
Berry, V., and O. Gascuel. 1996. On the Interpretation of Bootstrap Trees: Appropriate Threshold of Clade Selection and Induced Gain. Mol. Biol. Evol. 13: 999–1011.
Chan, Y. K., Coppens d'eeckenbrugge, G., and Sanewski, G. M. 2003. Chapter 3: Breeding and Variety Improvement In D. P. Bartholomew, Paull, R. E., and Rohrbach, K. G. (Ed.), The Pineapple: Botany, Production and Uses. 33–51. Wallingford, UK: CABI Publishing.
Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R., Hills, H. G., Qui, Y. L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedren, M., Gaut, B. S., Jansen, R. K., Kim, K. J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q. Y., Plunkett, G. M., Soltis, P. S., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, G. H., Graham, S., Barrett, S. C. H., Dayanandan, S., and Albert, V. A. 1993. Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid GenerbcL. Ann. Mo. Bot. Gard. 80: 528–580.
Clegg, M. T. 1993. Review: Chloroplast Gene Sequences and the Study of Plant Evolution. Proc. Natl. Acad. Sci. USA. 90: 363–367.
Duval, M. F., Buso, G. S. C., Ferreira, F. R., Noyer, J. L., Coppens d’Eeckenbrugge, G., Hamon, P., and Ferreira, M. E. 2003. Relationships in Ananas and Other Related Genera Using Chloroplast DNA Restriction Site Variation. Genome NRC Research Press. 46: 990–1004.
Graybeal, A. 1998. Is It Better to Add Taxa or Characters to a Difficult Phylogenetic Problem? Systematic Biology. 47: 9–17.
Hamid, M. J. A., and Ali, A. K. 2005. An Assessment of the Impact of Technology on Josaphine Pineapple Grown in Malaysia. Economics and Technology Management Research Centre, MARDI.
Hidayat, T., Yukawa, T., and Ito, M. 2005. Molecular Phylogenetics of Subtribe Aeridine (Orchidaceae): Insights from Plastid matK and Nuclear Ribosomal ITS Sequences. J. Plant Res. 118: 271–284.
Hillis, D. M. 1996. Inferring Complex Phylogenetic. Nature. 383: 130–131.
Malaysian Pineapple Industry Board. Kultivar Nanas.
Nei, M., and Kumar, S. 2000. Chapter 7: Phylogenetic Inference- Maximum Parsimony Method. In M. Nei, and Kumar, S. (Ed.), Molecular Evolution and Phylogenetics. New York: University Press Incorporation. 115–143.
Osaloo, S. K., and Kawano, S. 1999. Molecular systematics of Trilliaceae II. Phylogenetic Analyses of Trillium and its Allies Using Sequences of rbcL and matK Genes of cpDNA and Internal Transcribed Spacers of 18S–26S nrDNA. Plant Species Biology. 14: 75–94.
Schulte, K., Barfuss, M. H. J., and Zizka, G. 2008. Phylogeny of Bromelioideae (Bromeliaceae) Inferred from Nuclear and Plastid DNA Loci Reveals the Evolution of the Tank Habit Within the Subfamily. Molecular Phylogenetics and Evolution. 51: 327–339.
Sheng-Guo, J., Ke-Ke, H., Jun, W., and Sheng-Li, P. 2008. A Molecular Phylogenetic Study of Huperziaceae Based on Chloroplast rbcL and psbA-trnH Sequences. Journal of Systematics and Evolution. 46(2): 213–219.
Soltis, D. E., Soltis, P. S., Mort, M. E., Chase, M. W., Savolainen, V., Hoot, S. B., and Morton, C. M. 1998. Inferring Complex Phylogenies Using Parsimony: An Empirical Approach Using Three Large DNA Data Sets for Angiosperms. Syst. Biol. 47: 32–42.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.