STUDYING THE STRUCTURAL, ELECTRICAL, AND MAGNETIC CHARACTERISTICS OF ASiNRS-DOPED NEODYMIUM USING THE FIRST PRINCIPLE

Authors

  • Thanh Tung Nguyen Institute of Southeast Vietnamese Studies, Thu Dau Mot University, Thu Dau Mot City, Binh Duong Province, Vietnam https://orcid.org/0000-0003-0924-2746
  • Thanh Xuan Office of science, Thu Dau Mot University, Thu Dau Mot City, Binh Duong Province, Vietnam

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20452

Keywords:

Nd adsorption SiNRs, spintronic material, optoelectronic material, new materials

Abstract

There have been many applied studies on Nd in medicine, cooling techniques due to large amplitude changes in specific heat capacity, making glass pigments, making laser materials, and many other fields. However, there have been no specific studies on the structural and electronic properties related to the band gap. In this study, we investigated the optimization of Nd adsorption on Armchair nanoribbon silicene substrate. The research was carried out in three steps. The first step is to change the Nd atom through the four positions (top, valley, hollow, and bridge) to determine the optimal position. As a result, the bridge site has a magnetic moment of 4.68 µB and a locking degree of 0.69 Ǻ, has the lowest absorbed energy value of -2.6 eV, and has the most stable structure. Second step, we varied the Si-Si bond length of silicene for the same target, resulting in choosing the optimal bond length of 2.27 Ǻ. Finally, we consider the distance between the Nd atom and the silicene surface and determine that with the same bond length 2.27 Ǻ, the result obtained at a height of 2.11 Ǻ occurs most optimally. This result proves that silicene-doped Nd is very promising as a material for making visible sensors and spin motors in the future.

References

Paola De Padova et al. 2012. 1D Graphene-like Silicon Systems: Silicene Nano-ribbons. Journal of Physics: Condensed Matter. 24(22): 223001

Doi: 10.1088/0953-8984/24/22/223001.

S. Sinha et al. 2021. Preparation and Application of 0D-2D Nanomaterial Hybrid Heterostructures for Energy Applications. Materialstoday Advances. 12: 100169.

https://doi.org/10.1016/j.mtadv.2021.100169.

Kyozaburo Takeda, Kenji Shiraishi. 1994. Theoretical Possibility of Stage Corrugation in Si and Geanalogs of Graphite. Phys Rev B. 50: 20.

https://doi.org/10.1103/PhysRevB.50.14916.

Mathew, J. Cherukara et al. 2017. Silicene Growth through Island Migration and Coalescence, Nanoscale. 9: 10186-10192.

https://doi.org/10.1039/C7NR03153J.

Maurizio De Crescenzi et al. 2016. Formation of Silicene Nanosheets on Graphite. ACS Nano. 10(12): 11163-11171.

https://doi.org/10.1021/acsnano.6b06198.

Tang, C. et al. 2013. Structure–stability Relationships for Graphene-Wrapped Fullerene-coated Carbon Nanotubes. Carbon. 61: 458-66.

http://dx.doi.org/10.1016/j.carbon.2013.04.103.

Sadeddine, S. et al. 2017. Compelling Experimental Evidence of a Dirac Cone in the Electronic Structure of a 2D Silicon Layer. Sci. Rep. 7: 44400.

https://doi.org/10.1038/srep44400.

Boubekeur Lalmi et al. 2012. Epitaxial Growth of a Silicene Sheet. Applied Physics Letters. 97(22.

https://doi.org/10.1063/1.3524215.

Gogotsi, Y. et al. 2019. The Rise of Mxenes. ACS Nano. 13: 84914.

https://doi.org/10.1021/acsnano.9b06394.

Lima, M. P. et al. 2018. Silicene-based FET For Logical Technology. IEEE Electron Device Lett. 39: 1258-61.

https://doi.org/10.1149/2162-8777/abd09a.

Aghaei, S. M. et al. 2016. Theoretical Study of Gas Adsorption on Silicene Nanoribbons and Its Application in a Highly Sensitive Molecule Sensor. RSC Adv. 6: 94417-94428.

https://doi.org/10.1039/C6RA21293J.

Galashev, A. Y. et al. 2020. Silicene Anodes for Lithium-ion Batteries on Metal Substrates. J. Electrochem. Soc. 167: 50510.

http://dx.doi.org/10.1149/1945-7111/ab717a.

Sadeddine, S. et al. 2017. Compelling Experimental Evidence of a Dirac Cone in the Electronic Structure of a 2D Silicon Layer. Sci. Rep. 7: 44400.

https://doi.org/10.1038/srep44400.

Liu, C-C. et al. 2011. Quantum Spin Hall Effect in Silicene and Two-dimensional Germanium. Phys. Rev. Lett. 107: 76802. https://doi.org/10.1103/PhysRevLett.107.076802.

Ni, Z. et al. 2012. Tunable Band Gap in Silicene and Germanene. Nano Lett. 12: 113.

https://doi.org/10.1021/nl203065e.

Jia, T-T. et al. 2015. Band Gap on/off Switching of Silicene Superlattice. J. Phys. Chem. C. 119: 20747.

https://doi.org/10.1021/acs.jpcc.5b06626.

Drummond, N. D. et al. 2012. Electrically Tunable Band Gap In Silicene. Phys. Rev. B. 85: 75423.

https://doi.org/10.1103/PhysRevB.85.075423.

Lin, S-Y. et al. 2020. Stacking-configuration-enriched fundamental Properties in Bilayer Silicenes, Silicene-based Layer. Mater. 5: 28.

https://doi.org/10.48550/arXiv.1912.10257.

Jia, T-T. et al. 2015. Band Gap on/off Switching of Silicene Superlattice. J. Phys. Chem. C. 119: 20747.

https://doi.org/10.1021/acs.jpcc.5b06626.

Drummond, N. D., Zólyomi, V. and Fal’ko,V. I. 2012. The Electrically the Tunable Band Gap in Silicene. Phys. Rev. B. 85: 75423.

https://doi.org/10.1103/PhysRevB.85.075423.

A. Fleurence et al. 2013. Simultaneous Optimization of Spin Fluctuations and Superconductivity under Pressure in an Iron-Based Superconductor. Phys. Rev. Lett. 13: 685-690.

https://doi.org/10.1103/PhysRevLett.111.107004.

Mehdi, A. et al. 2016. Structural Stability of Functionalized Silicene Nanoribbons with Normal, Reconstructed, and Hybrid Edges. Nanomater. 59: 59162.

http://dx.doi.org/10.1155/2016/5959162.

Chuan, M. W. et al. 2019. Electronic Properties of Silicene Nanoribbons using the Tight-binding Approach. International Symposium on Electronics and Smart Devices (ISESD). 1–4.

http://dx.doi.org/10.1109/ISESD.2019.8909598.

Daniele Chiappe, et al. 2012. Local Electronic Properties of Silicene Phases. Advanced Materials. 24(37): 5088-93.

https://doi.org/10.1002/adma.201202100.

Ghasemi, N. et al. 2019. Electronic, Magnetic and Transport Properties of Zigzag Silicene Nanoribbon Adsorbed with Cu Atom: A First-principles Calculation. J. Magn. Magn. Mater. 473: 306-11.

http://dx.doi.org/10.1016/j.jmmm.2018.10.059.

Xu, L. et al. 2015. Adsorption of Ti Atoms on Zigzag Silicene Nanoribbons: Influence on Electric, Magnetic, and Thermoelectric Properties. J. Phys. D. Appl. Phys. 48: 215306.

https://iopscience.iop.org/article/10.1088/0022-3727/48/21/215306.

Andrzej, Szytuła. 2020. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics. Physical Sciences.

http://dx.doi.org/10.1201/9780138719411.

Werbowy, S., Windholz, L. 2017. Studies of Landé gJ-Factors of Singly Ionized Neodymium Isotopes (142, 143, and 145) at Relatively Small Magnetic Fields up to 334 G by Collinear Laser Ion Beam Spectroscopy. Eur. Phys. J. D. 71:16.

https://doi.org/10.1140/epjd/e2016-70641-3.

T. J. Zhang et al.1987. Experimental Study of Electrical Properties at the Nd-doped Si-SiO2 Interface. Journal of Physics and Chemistry of Solids. 48(6): 551-554.

https://doi.org/10.1016/0022-3697(87)90050-3.

E. Steveler et al. 2014. Photoluminescence Properties of Nd-doped Silicon Oxide Thin Films Containing Silicon Nanoparticles. Journal of Luminescence. 150: 35-39.

https://doi.org/10.1016/j.jlumin.2014.01.061.

Wei-Fan Lee et al. 2009. Nd-doped Silicon Nanowires with Room Temperature Ferromagnetism and Infrared Photoemission. Appl. Phys. Lett. 94: 263117.

https://doi.org/10.1063/1.3168550.

Pavel Straka et al. 2019. Linear Structures of Nd-Fe-B Magnets: Simulation, Design and Implementation in Mineral Processing – A Review. Minerals Engineering. 143(November 2019): 105900.

https://doi.org/10.1016/j.mineng.2019.105900.

A. I. Zagumennyĭ et al. 1992. The Nd:GdVO4 Crystal: A New Material for Diode-pumped Lasers. Soviet Journal of Quantum Electronics. 22(12): 22-1071.

https://iopscience.iop.org/article/10.1070/QE1992v022n12ABEH003672.

M. M. Carnasciali et al. 1983. Phase Equilibria in the Nd-Cu System. Journal of the Less Common Metals. 92(1): 97-103.

https://doi.org/10.1016/0022-5088(83)90230-8.

Gschneidner, K. A., Calderwood, F. W. 1982. The Er−Nd (Erbium−Neodymium) System. Bulletin of Alloy Phase Diagrams. 3: 350-351.

https://doi.org/10.1007/BF02869308.

Jirapan Dutchaneephet et al. 2018. Optical Spectroscopic Investigations of Neodymium and Erbium Added Bismuth Silicate Glasses. Optik. 178: 111-116.

https://doi.org/10.1016/j.ijleo.2018.09.172.

Yifeng, Shi et al. 2022. Synthesis, Structures, Optical Properties and DFT Studies Of Neodymium Complexes Containing Octanoyl Amino Carboxylic Acids. Optics & Laser Technology. 155: 108445.

https://doi.org/10.1016/j.optlastec.2022.108445.

Downloads

Published

2024-06-02

Issue

Section

Science and Engineering

How to Cite

STUDYING THE STRUCTURAL, ELECTRICAL, AND MAGNETIC CHARACTERISTICS OF ASiNRS-DOPED NEODYMIUM USING THE FIRST PRINCIPLE. (2024). Jurnal Teknologi, 86(4), 45-50. https://doi.org/10.11113/jurnalteknologi.v86.20452