ANTIFUNGAL ACTIVITY OF ENDOPHYTIC FUNGI ASSOCIATED WITH OCIMUM SANCTUM
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.20508Keywords:
Endophytic fungi, Ocimum sanctum, Antifungal activity, Volatile compounds, Dichloromethane extractsAbstract
Endophytic fungi of the medicinal herb, Ocimum sanctum are believed to possess antifungal activity against pathogenic fungi. Due to the emergence of pathogenic fungi and antibiotic-resistant strains, the search for alternative antimicrobial agents is a need. The present study aimed to evaluate the antifungal activity of endophytic fungi isolated from O. sanctum. Plate-to-plate method, disk diffusion assay, and Scanning electron microscopic (SEM) were employed in this study. The finding revealed that fungal isolates Colletotrichum sp. IBRL OS-39, Aspergillus sp. IBRL OS-65, Muscodor sp. IBRL OS-94 and Muscodor sp. IBRL OS-98 was able to produce volatile compounds with antifungal activity against pathogenic fungi. On the disk diffusion assay, Lasiodiplodia sp. IBRL OS-64, and Muscodor sp. IBRL OS-94 displayed good antifungal activity against test fungi with a diameter of inhibition zone between 9.6±0.6 - 14.3±0.6 mm and 11.2±1.2 - 15.7±0.6 mm, respectively. SEM observations revealed remarkable morphological changes in Candida albicans treated with the dichloromethane extracts of Lasiodiplodia sp. IBRL OS-64 and Muscodor sp. IBRL OS-94 with severe cell damage beyond repair and thus leads to cell death.
References
Owen, N. L. & Hundley, N. 2004. Endophytes - The Chemical Synthesizers inside Plants. Science Progress. 87(2): 79-99. https://doi.org/10.3184/003685004783238553.
Sadrati, N., Daoud, H., Zerroug, A., Dahamna, S. & Bouharati, S. 2013. Screening of Antimicrobial and Antioxidant Secondary Metabolites from Endophytic Fungi Isolated from Wheat (Tricum durum). Journal of Plant Protection Research. 53(2): 128-136.
https://doi.org/10.2478/jppr-2013-0019.
Guo, B., Wang, Y., Sun, X. & Tang, K. 2008. Bioactive Natural Products from Endophytes: A Review. Applied Biochemistry and Microbiology. 44(2): 136-142.
https://doi.org/10.1134/S0003683808020026.
Stierle, A., Strobel, G. & Stierle, D. 1993. Taxol And Taxane Production by Taxomyces andreanae, an Endophytic Fungus of Pacific Yew. Science. 260: 214-216.
https://doi.org/10.1126/science.8097061.
Ibrahim, M., Kaushik, N., Sowemimo, A., Chhipa, H., Koekemoer, T., Venter, M. & Odukoya, O. A. 2017. Antifungal and Antiproliferative Activities of Endophytic Fungi Isolated from the Leaves of Markhamia tomentosa. Pharmaceutical Biology. 55(1): 590-595.
https://doi.org/10.1080/13880209.2016.1263671.
Venieraki, A., Dimou, M. & Katinakis, P. 2017. Endophytic Fungi Residing in Medicinal Plants have the Ability to Produce the Same or Similar Pharmacologically Active Secondary Metabolites as their Hosts. Hellenic Plant Protection Journal. 10: 51-66.
https://doi.org/10.1515/hppj-2017-0006.
Pattanayak, P., Behera, P., Das, D. & Panda, S. K. 2010. Ocimum sanctum Linn. A Reservoir Plant for Therapeutic Applications: An Overview. Pharmacognosy Reviews. 4(7): 95-105.
https://doi.org/10.4103/0973-7847.65323.
Shetty, S., Udupa, S., Udupa, L. & Somayaji, N. 2006. Wound Healing Activity of Ocimum sanctum Linn with Supportive Role of Antioxidant Enzymes. Indian Journal of Physiology and Pharmacology. 50: 163-168. PMID: 17051736.
Trevisan, M. T., Vasconcelos Silva, M. G, Pfundstein, B., Spiegelhalder, B. & Owen, R. W. 2006. Characterization of the Volatile Pattern and Antioxidant Capacity of Essential Oils from Different Species of the Genus Ocimum. Journal of Agricultural and Food Chemistry. 54: 4378-4382.
https://doi.org/10.1021/jf060181.
Kelm, M. A., Nair, M.G., Stasburg, G.M. & DeWitt, D. L. 2000. Antioxidant and Cyclooxygenase Inhibitory Phenolic Compounds from Ocimum sanctum Linn. Phytomed. 7: 7-13.
https://doi.org/10.1016/S0944-7113(00)80015-X.
Singh, S., Malhotra, M. & Majumdar, D. K. 2005. Antibacterial Activity of Ocimum sanctum L. Fixed Oil. Indian Journal of Experimental Biology. 43: 835-837.
Jalil, M. T. M., Ibrahim, D. & Suhaimi, N. S. M. 2020. Time-kill Study and Morphological Changes of Proteus mirabilis Cells Exposed to Ethyl Acetate Crude Extract of Lasiodiplodia pseudotheobromae IBRL OS-64. Malaysian Journal of Microbiology. 16(3): 219-228.
https://doi.org/10.21161/mjm.190605.
Stinson, M., Ezra, D., Hess, W. M., Sears, J. & Strobel, G. 2003. An endophytic Gliocladium sp. of Eucryphia cordifolia Producing Selective Volatile Antimicrobial Compounds. Plant Science. 165: 913-922.
https://doi.org/10.1016/S0168-9452(03)00299-1.
Landum, M. C., Felix, Md-R., Alho, J., Garcia, R., Cabrita, M. J., Rei, F. & Varanda, C. M. R. 2016. Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiological Research. 183: 100-108.
https://doi.org/10.1016/j.micres.2015.12.001.
Grover, R. K. & Moore, J. D. 1962. Toxicometric Studies of Fungicides against Brown Rot Organisms Sclerotinia fructicola and S. laxa. Phytopathology. 52: 876-880.
CLSI. 2017. Performance Standards for Antifungal Susceptibility Testing of Yeasts. 1st ed. CLSI supplement M60. Clinical Laboratory Standards Institute. Wayne, PA.
Ibrahim, D., Lee, C. C., Yenn, T. W., Zakaria, L. & Sheh-Hong, L. 2015. Effect of the Extract of Endophytic Fungus, Nigrospora sphaerica CL-OP 30, Against the Growth of Methicillin-Resistant Staphylococcus aureus (MRSA) and Klebsiella pneumonia cells. Tropical Journal of Pharmaceutical Research. 14(11): 2091-2097.
https://doi.org/10.4314/tjpr.v14i11.20,
Rowan, D. D. 2011. Volatile metabolites. Metabolites. 1(1): 41-63.
https://doi.org/10.3390/metabo1010041.
Naik, B. 2018. Volatile Hydrocarbons from Endophytic Fungi and Their Efficacy in Fuel Production and Disease Control. Egyptian Journal of Biological Pest Control. 28: 69.
https://doi.org/10.1186/s41938-018-0072-x.
Aydi Ben Abdallah, R., Jabnoun-Khiareddine, H., Mejdoub-Trabelsi, B. & Daami-Remadi, M. 2015. Soil-borne and Compost-borne Aspergillus Species for Biologically Controlling Post-harvest Diseases of Potatoes Incited by Fusarium sambucinum and Phytophthora erythroseptica. Journal of Plant Pathology & Microbiology. 6: 313.
https://doi.org/10.4172/2157-7471.1000313.
Strobel, G. A., Dirkse, E., Sears, J. & Markworth, C. 2001. Volatile Antimicrobials from Muscodor albus, a Novel Endophytic Fungus. Microbiology. 147: 2943-2950.
https://doi.org/10.1099/00221287-147-11-2943.
Meshram, V., Kapoor, N., Chopra, G. & Saxena, S. 2017. Muscodor camphora, a New Endophytic Species from Cinnamomum camphora. Mycosphere. 8(4): 568-582.
Pena, L. C., Jungklaus, G. H., Savi, D. C., Ferreira-Maba, L., Servienski, A., Maia, B. H. L. N. S., Annies, V., Galli-Terasawa, L. V., Glienke, C. & Kava, V. 2019. Muscodor brasiliensis sp. nov. Produces Volatile Organic Compounds with Activity against Penicillium digitatum. Microbiological Research. 221: 28-35.
https://doi.org/10.1016/j.micres.2019.01.002.
Rabha, A. J., Naglot, A., Sharma, G. D., Gogoi, H. K. & Veer, V. 2014. In Vitro Evaluation of Antagonism of Endophytic Colletotrichum gloeosporioides Against Potent Fungal Pathogens of Camellia sinensis. Indian Journal of Microbiology. 54(3): 302-309.
https://doi.org/10.1007/s12088-014-0458-8.
Meshram, V., Kapoor, N. & Saxena, S. 2013. Muscodor kashayum sp. nov. – A New Volatile Anti-microbial Producing Endophytic Fungus. Mycology. 4(4): 196-204.
https://doi.org/10.1080/21501203.2013.877990.
Orlandelli, R. C., Almeida, T. T., Alberto, R. N., Polonio, J. C., Azevedo, J. L. & Pamphile, J. A. 2015. Antifungal and Proteolytic Activities of Endophytic Fungi Isolated from Piper hispidum Sw. Brazilian Journal of Microbiology. 46(2): 359-366.
https://doi.org/10.1590/S1517-838246220131042.
Campanile, G., Ruscelli, A. & Luisi, N. 2007. Antagonistic Activity of Endophytic Fungi Towards Diplodia corticola Assessed by In Vitro and in Planta Tests. European Journal of Plant Pathology. 117: 237-246.
https://doi.org/10.1007/s10658-006-9089-1.
Packaraj, R., Jeyakumar, S., Ayyappan, N., Adhirajan, N., Premkumar, G., Rajarathinam, K. & Muthuramkumar, S. 2016. Antimicrobial and Cytotoxic Activities of Endophytic Fungus Colletotrichum gloeosporioides Isolated from Endemic Tree Cinnamomum malabatrum. Studies in Fungi. 1(1): 104-113.
https://doi.org/10.5943/sif/1/1/10.
Tong, X., Shen, X. & Hou, C. 2018. Antimicrobial Activity of Fungal Endophytes from Vaccinium dunalianum var. urophyllum. Sains Malaysiana. 47(8): 1685-1692.
https://doi.org/10.17576/JSM-2018-4708-07.
Shirazi, F. & Kontoyiannis, D. P. 2013. Mitochondrial Respiratory Pathways Inhibition in Rhizopus oryzae Potentiates Activity of Posaconazole and Itraconazole via Apoptosis. PloS One. 8(5): 1-6.
https://doi.org/10.1371/journal.pone.0063393.
Parks, L. W. & Casey, W. M. 1996. Fungal sterols. In: Prasad, R. & Ghannoum, M. A. (eds). Lipids of Pathogenic Fungi. CRC Press, Florida. 63-82.
Kandasamy, M. & Arunachalam, K. D. 2008. Evaluation of In Vivo Antibacterial Property of Seaweeds of South-east Cost of India. African Journal of Biotechnology. 7: 1958-1961.
https://doi.org/10.5897/AJB08.120.
Taufiq, M. M. J. & Darah, I. 2020. Biological Activity of Lasiodiplodia pseudotheobromae IBRL OS-64 Extracts, an Endophytic Fungus Isolated from Medicinal Herb, Ocimum sanctum Against Foodborne Diarrhea-caused Bacteria. Pharmacognosy Journal. 12(4): 897-904.
https://doi.org/10.5530/pj.2020.12.127.
Tong, W. Y., Nurul, J. Z., Nurhaida., Tan, W. N., Melati, K., Latiffah, Z. & Ibrahim D. 2014. Antimicrobial activity of Phomopsis sp. ED2 residing in Medicinal Plant Orthosiphon stamineus Benth. Annual Research & Review in Biology. 4(9): 1490-1501. https://doi.org/10.9734/ARRB/2014/8060.
Ganan, M., Lorentzen, S. B., Agger, J. W., Heyward, C. A., Bakke, O., Knutsen, SH, Aam, B. B., Eijsink, V. G. H., Gaustad, P. & Sorlie, M. 2019. Antifungal Activity of Well-defined Chitooligosaccharide Preparations against Medically Relevant Yeasts. PLoS ONE. 14(1): e0210208.
https://doi.org/10.1371/journal.pone.0210208.
Fauci, A. S., Kasper, D. K., Longo, D. L., Braunwald, E., Hanser, S. L., Jameson, J. L. & Loscalzo, J. 2008. Harrison’s Principles of Internal Medicine. 17th edition, McGraw-Hill Professional, New York.
Mu’azzam, K. A. A. R. & Darah, I. 2019. Ceratobasidium ramicola IBRLCM127, an Endophytic Fungus Isolated from Curcuma mangga Valeton & Zijp with Strong Anti-candidal Activity. Journal of Applied Pharmaceutical Science. 9(11): 86-92.
https://doi.org/10.7324/JAPS.2019.91111.
Shraideh, Z. A., Abu-Elteen, K. H. & Sallal, A. J. 1998. Ultrastructural Effects of Date Extract on Candida albicans. Mycopathologia. 142: 119-123.
https://doi.org/10.1023/a:1006901019786.
Nath, A. & Joshi, S. 2017. Anti-candidal Effect of Endophytic Fungi Isolated from Calotropis gigantean. Revista De Biologia Tropical. 65(4): 1437-1447.
Selitrennikoff, C. P. 2001. Antifungal Protein. Applied and Environmental Microbiology. 67(7): 2883-2894.
https://doi.org/10.1128/AEM.67.7.2883-2894.2001.
Bush, K. 2012. Antimicrobial Agents Targeting Bacterial Cell Walls and Cell Membranes. Revue Scientifique et Technique. 31(1): 43-56.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.