• Suhaily Suhaimi Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nardiah Rizwana Jaafar Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nashriq Jailani Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Roshanida A. Rahman Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norzita Ngadi Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Abdul Munir Abdul Murad Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Noor Haza Fazlin Hashim Water Quality Laboratory, National Water Research Institute Malaysia (NAHRIM), Ministry of Environmental and Water, Jalan Putra Permai, 43300 Seri Kembangan, Selangor, Malaysia
  • Rosli Md. Illias Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia



Magnetic nanoparticles, functionalized starch, laccase, covalent immobilization


Surface chemistry of magnetic nanoparticles (MNP) is crucial to provide a strong protein-support interaction for the immobilization process. The stability and biocompatibility of the MNP can be structurally enhanced by integrating with organic materials. In this study, MNP from KI/FeCl3 has successfully synthesized that showed a stronger magnetic strength (72.5 emu/g) compared to common standard precursors, FeCl2/FeSO4 (< 60 emu/g). The synthesized MNP was then incorporated via in-situ with functionalized starch; dialdehyde (DAS-MNP), thiol (TS-MNP), and carboxymethyl (CMS-MNP) for Laccase (Lac) immobilization. From docking analysis, CMS-MNP portrayed the highest binding affinity and interacted with highest number of Lac amino acids residues compared to DAS- and TS-MNP. Aligned with this result, immobilized Lac using CMS-MNP achieved the highest recovery activity (80.3%), highly stable at 75 °C for 4 h, and retained more than 50% of its initial activity after 10 cycles. The CMS-MNP-Lac also showed about the same catalytic efficiency with free Lac (1.19 and 1.58 mM-1s-1, respectively). It is demonstrated that the functional group of the starch-MNP plays a crucial role in attaining a stable immobilized Lac. Therefore, yield a promising biocatalyst to be applied in various fields.


R. Mehra, J. Muschiol, A. S. Meyer, and K. P. Kepp. 2018. A Structural-chemical Explanation of Fungal Laccase Activity. Sci. Rep. 8(1): 1-16.

S. Datta, R. Veena, M. S. Samuel, and E. Selvarajan. 2021. Immobilization of Laccases and Applications for the Detection and Remediation of Pollutants: A Review. Environ. Chem. Lett. 19(1): 521-538.

A. Basso and S. Serban. 2019. Industrial Applications of Immobilized Enzymes-A Review. Mol. Catal. 479(September): 110607.

R. O. Cristóvão et al. 2011. Enzymatic Immobilization of Commercial Laccase onto Green Coconut Fiber by Adsorption and its Application for Reactive Textile Dyes Degradation. J. Mol. Catal. B Enzym. 72: 6-12.

L. Lonappan et al. 2018. Covalent Immobilization of Laccase on Citric Acid Functionalized Micro-biochars Derived from Different Feedstock and Removal of Diclofenac. Chem. Eng. J. 351(June): 985-994.

J. Gill, V. Orsat, and S. Kermasha. 2018. Optimization of Encapsulation of a Microbial Laccase Enzymatic Extract using Selected Matrices. Process Biochem. 65(November): 55-61.

J. Hong, D. Jung, S. Park, Y. Oh, K. K. Oh, and S. H. Lee. 2021. Immobilization of Laccase via Cross-linked Enzyme Aggregates Prepared using Genipin as a Natural Cross-linker. Int. J. Biol. Macromol. 169: 541-550.

C. Horn, D. Pospiech, P. J. Allertz, M. Müller, K. Salchert, and R. Hommel. 2021. Chemical Design of Hydrogels with Immobilized Laccase for the Reduction of Persistent Trace Compounds in Wastewater. ACS Appl. Polym. Mater. 3(5): 2823-2834.

M. Bilal, Y. Zhao, T. Rasheed, and H. M. N. Iqbal. 2018. Magnetic Nanoparticles as Versatile Carriers for Enzymes Immobilization: A Review. Int. J. Biol. Macromol. 120: 2530-2544.

M. Mahdavi et al. 2013. Synthesis, Surface Modification and Characterisation of Biocompatible Magnetic Iron Oxide Nanoparticles for Biomedical Applications. Molecules. 18(7): 7533-7548.

P. Biehl, M. von der Lühe, S. Dutz, and F. H. Schacher. 2018. Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers (Basel). 10(1).

R. M. Robinson, M. Abdelmoula, M. Mallet, and R. Coustel. 2019. Starch Functionalized Magnetite Nanoparticles: New Insight into the Structural and Magnetic Properties. J. Solid State Chem. 277(June): 587-593.

S. A. Junejo, B. M. Flanagan, B. Zhang, and S. Dhital. 2022. Starch Structure and Nutritional Functionality - Past Revelations and Future Prospects. Carbohydr. Polym. 277(August 2021): 118837.

Y. Fan and F. Picchioni. 2020. Modification of Starch: A Review on the Application of 'Green' Solvents and Controlled Functionalization. Carbohydr. Polym. 241(April).

X. Qiu, Y. Wang, Y. Xue, W. Li, and Y. Hu. 2020. Laccase Immobilized on Magnetic Nanoparticles Modified by Amino-functionalized Ionic Liquid via Dialdehyde Starch for Phenolic Compounds Biodegradation. Chem. Eng. J. 391.

A. A. Kadam et al. 2020. Thiolation of Chitosan Loaded over Super-magnetic Halloysite Nanotubes for Enhanced Laccase Immobilization. Nanomaterials. 10(12): 1-20.

N. A. Samak et al. 2018. CotA Laccase Immobilized on Functionalized Magnetic Graphene Oxide Nano-sheets for Efficient Biocatalysis. Mol. Catal. 445: 269-278.

E. Steen Redeker, D. T. Ta, D. Cortens, B. Billen, W. Guedens, and P. Adriaensens. 2013. Protein Engineering for Directed Immobilization. Bioconjug. Chem. 24(11): 1761-1777.

T. Sulistyaningsih, J. S. Santosa, D. Siswanta, and B. Rusdiarso. 2017. Synthesis and Characterization of Magnetites Obtained from Mechanically and Sonochemically Assissted Co-precipitation and Reverse Co-precipitation Methods. Int. J. Mater. Mech. Manuf. 5(1): 16-19.

H. C. Roth, S. P. Schwaminger, M. Schindler, F. E. Wagner, and S. Berensmeier. 2015. Influencing Factors in the Co-precipitation Process of Superparamagnetic Iron Oxide Nano Particles: A Model-based Study. J. Magn. Magn. Mater. 377: 81-89.

M. Harada, M. Kuwa, R. Sato, T. Teranishi, M. Takahashi, and S. Maenosono. 2020. Cation Distribution in Monodispersed MFe2O4(M = Mn, Fe, Co, Ni, and Zn) Nanoparticles Investigated by X-ray Absorption Fine Structure Spectroscopy: Implications for Magnetic Data Storage Catalysts, Sensors, and Ferrofluids. ACS Appl. Nano Mater. 3(8): 8389-8402.

I. Sharifi, H. Shokrollahi, M. M. Doroodmand, and R. Safi. 2012. Magnetic and Structural Studies on CoFe2O4 Nanoparticles Synthesized by Co-precipitation, Normal Micelles and Reverse Micelles Methods. J. Magn. Magn. Mater. 324(10): 1854-1861.

N. Mizutani, T. Iwasaki, S. Watano, T. Yanagida, H. Tanaka, and T. Kawai. 2008. Effect of Ferrous/ferric Ions Molar Ratio on Reaction Mechanism for Hydrothermal Synthesis of Magnetite Nanoparticles. Bull. Mater. Sci. 31(5): 713-717.

I. K. Ghosh, Z. Iqbal, S. Bhattacharya, and A. Bordoloi. 2020. Insight of Boron Induced Single-step Synthesis of Short-chain Olefins from Bio-derived Syngas. Fuel. 263(November): 116663.

H. Jia et al. 2016. Immobilization of ω-transaminase by Magnetic PVA-Fe3O4 Nanoparticles. Biotechnol. Reports. 10: 49-55.

S. Altun, B. Çakiroğlu, M. Özacar, and M. Özacar. 2015. A Facile and Effective Immobilization of Glucose Oxidase on Tannic Acid Modified CoFe2O4 Magnetic Nanoparticles. Colloids Surfaces B Biointerfaces. 136: 963-970.

T. Tarhan, A. Ulu, M. Sariçam, M. Çulha, and B. Ates. 2020. Maltose Functionalized Magnetic Core/shell Fe3O4@Au Nanoparticles for an Efficient L-asparaginase Immobilization. Int. J. Biol. Macromol. 142: 443-451.

J. Lu, Y. Li, H. Zhu, and G. Shi. 2021. SiO2-Coated Fe3O4 Nanoparticle/Polyacrylonitrile Beads for One-step Lipase Immobilization. ACS Appl. Nano Mater. 4(8): 7856-7869.

H. Peidayesh, Z. Ahmadi, H. A. Khonakdar, M. Abdouss, and I. Chodák. 2020. Fabrication and Properties of Thermoplastic Starch/montmorillonite Composite using Dialdehyde Starch as a Crosslinker. Polym. Int. 69(3): 317-327.

J. Yu, P. R. Chang, and X. Ma. 2010. The Preparation and Properties of Dialdehyde Starch and Thermoplastic Dialdehyde Starch. Carbohydr. Polym. 79(2): 296-300.

M. R. Saboktakin, A. Maharramov, and M. A. Ramazanov. 2009. Synthesis and Characterization of Superparamagnetic Nanoparticles Coated with Carboxymethyl Starch (CMS) for Magnetic Resonance Imaging Technique. Carbohydr. Polym. 78(2): 292-295.

Y. Zuo, W. Liu, J. Xiao, X. Zhao, Y. Zhu, and Y. Wu. 2017. Preparation and Characterization of Dialdehyde Starch by One-step Acid Hydrolysis and Oxidation. Int. J. Biol. Macromol. 103: 1257-1264.

S. Das and M. K. Das. 2019. Synthesis and Characterization of Thiolated Jackfruit Seed Starch as a Colonic Drug Delivery Carrier. Int. J. Appl. Pharm. 11(3): 53-62.

S. Li, J. M. V. Mujyambereb, and M. Liu. 2011. Synthesis of Carboxymethyl Starch with High Degree of Substitution by a Modified Dry Process. Adv. Mater. Res. 233-235(August): 306-310.

T. T. Dung, T. M. Danh, L. T. M. Hoa, D. M. Chien, and N. H. Duc. 2009. Structural and Magnetic Properties of Starch-coated Magnetite Nanoparticles. J. Exp. Nanosci. 4(3): 259-267.

A. Díaz-Hernández, J. Gracida, B. E. García-Almendárez, C. Regalado, R. Núñez, and A. Amaro-Reyes. 2018. Characterization of Magnetic Nanoparticles Coated with Chitosan: A Potential Approach for Enzyme Immobilization. J. Nanomater. 2018.

F. Gao and G. Ma. 2012. Effects of Microenvironment on Supported Enzymes. Top Catal. 55: 1114-1123.

D.-H. Zhang, L.-X. Yuwen, and L.-J. Peng. 2013. Parameters Affecting the Performance of Immobilized Enzyme. J. Chem. 2013: 1-7.

C. Zhang and X. Cai. 2019. Immobilization of Horseradish Peroxidase on Fe3O4/nanotubes Composites for Biocatalysis-degradation of Phenol. Compos. Interfaces. 26(5): 379-396.

C. Algieri, L. Donato, and L. Giorno. 2016. Tyrosinase Immobilized on a Hydrophobic Membrane. Biotechnol. Appl. Biochem. 1-8.

S. A. Mohamed, M. H. Al-Harbi, Y. Q. Almulaiky, I. H. Ibrahim, and R. M. El-Shishtawy. 2017. Immobilization of Horseradish Peroxidase on Fe3O4 Magnetic Nanoparticles. Electron. J. Biotechnol. 27: 84-90.

N. Jailani, N. R. Jaafar, S. Suhaimi, M. M. Mackeen, F. D. A. Bakar, and R. M. Illias. 2022. Cross-linked Cyclodextrin Glucanotransferase Aggregates from Bacillus lehensis G1 for Cyclodextrin Production: Molecular Modeling, Developmental, Physicochemical, Kinetic and Thermodynamic Properties. Int. J. Biol. Macromol. 213(May): 516-533.

M. Bilal, M. Asgher, H. Cheng, Y. Yan, and H. M. N. Iqbal. 2019. Multi-point Enzyme Immobilization, Surface Chemistry, and Novel Platforms: A Paradigm Shift in Biocatalyst Design. Crit. Rev. Biotechnol. 39(2): 202-219.

J. C. Y. Wu, C. H. Hutchings, M. J. Lindsay, C. J. Werner, and B. C. Bundy. 2015. Enhanced Enzyme Stability Through Site-Directed Covalent Immobilization. J. Biotechnol. 193: 83-90.

C. C. S. Fortes, A. L. Daniel-da-Silva, A. M. R. B. Xavier, and A. P. M. Tavares. 2017. Optimization of Enzyme Immobilization on Functionalized Magnetic Nanoparticles for Laccase Biocatalytic Reactions. Chem. Eng. Process. Process Intensif. 117(August): 1-8.

X. Chen, B. He, M. Feng, D. Zhao, and J. Sun. 2020. Immobilized Laccase on Magnetic Nanoparticles for Enhanced Lignin Model Compounds Degradation. Chinese J. Chem. Eng. 28(8): 2152-2159.

S. Talekar, S. Nadar, A. Joshi, and G. Joshi. 2014. Pectin Cross-linked Enzyme Aggregates (pectin-CLEAs) of Glucoamylase. RSC Adv. 4(103): 59444-59453.

J. O. Park, K. Y. Rhee, and S. J. Park. 2010. Silane Treatment of Fe3O4 and Its Effect on the Magnetic and Wear Properties of Fe3O4 /epoxy Nanocomposites. Appl. Surf. Sci. 256(23): 6945-6950.

S. Anjum, T. Zeeshan, S. Waseem, I. Waseem, and Z. Mustafaz. 2022. Investigation of Cationic Distribution, Y-K Angles, and Optical and Dielectric Properties of as-synthesized Cerium-doped Cobalt nano-ferrites Prepared by Co-precipitation Method. Appl. Phys. A Mater. Sci. Process. 128(5): 1-13.

S. Asmat, Q. Husain, and M. S. Khan. 2018. A Polypyrrole-methyl Anthranilate Functionalized Worm-like Titanium Dioxide Nanocomposite as an Innovative Tool for Immobilization of Lipase: Preparation, Activity, Stability and Molecular Docking Investigations. New J. Chem. 42(1): 91-102.

A. Rajan, J. D. Sudha, and T. E. Abraham. 2008. Enzymatic Modification of Cassava Starch by Fungal Lipase. Ind. Crops Prod. 27(1): 50-59.

Z. Wang et al. 2021. The Study of Laccase Immobilization Optimization and Stability Improvement on CTAB-KOH Modified Biochar. BMC Biotechnol. 21(1): 1-14.

J. Xu et al. 2013. Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization. Bull. Korean Chem. Soc. 34(8): 2408-2412.

A. Ali et al. 2021. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 9(July): 1-25.



How to Cite

Suhaimi, S. ., Jaafar, N. R., Jailani, N. ., A. Rahman, R. ., Ngadi, N. ., Abdul Murad, A. M. ., Hashim, N. H. F. ., & Md. Illias, R. (2023). IN-SITU FABRICATION OF FUNCTIONALIZED STARCH MAGNETIC NANOPARTICLES FOR IMMOBILIZATION OF LACCASE . Jurnal Teknologi, 85(6), 169-179.



Science and Engineering