IN-SITU FABRICATION OF FUNCTIONALIZED STARCH MAGNETIC NANOPARTICLES FOR IMMOBILIZATION OF LACCASE

Authors

  • Suhaily Suhaimi Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nardiah Rizwana Jaafar Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nashriq Jailani Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Roshanida A. Rahman Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norzita Ngadi Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Abdul Munir Abdul Murad Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Noor Haza Fazlin Hashim Water Quality Laboratory, National Water Research Institute Malaysia (NAHRIM), Ministry of Environmental and Water, Jalan Putra Permai, 43300 Seri Kembangan, Selangor, Malaysia
  • Rosli Md. Illias Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.20554

Keywords:

Magnetic nanoparticles, functionalized starch, laccase, covalent immobilization

Abstract

Surface chemistry of magnetic nanoparticles (MNP) is crucial to provide a strong protein-support interaction for the immobilization process. The stability and biocompatibility of the MNP can be structurally enhanced by integrating with organic materials. In this study, MNP from KI/FeCl3 has successfully synthesized that showed a stronger magnetic strength (72.5 emu/g) compared to common standard precursors, FeCl2/FeSO4 (< 60 emu/g). The synthesized MNP was then incorporated via in-situ with functionalized starch; dialdehyde (DAS-MNP), thiol (TS-MNP), and carboxymethyl (CMS-MNP) for Laccase (Lac) immobilization. From docking analysis, CMS-MNP portrayed the highest binding affinity and interacted with highest number of Lac amino acids residues compared to DAS- and TS-MNP. Aligned with this result, immobilized Lac using CMS-MNP achieved the highest recovery activity (80.3%), highly stable at 75 °C for 4 h, and retained more than 50% of its initial activity after 10 cycles. The CMS-MNP-Lac also showed about the same catalytic efficiency with free Lac (1.19 and 1.58 mM-1s-1, respectively). It is demonstrated that the functional group of the starch-MNP plays a crucial role in attaining a stable immobilized Lac. Therefore, yield a promising biocatalyst to be applied in various fields.

References

R. Mehra, J. Muschiol, A. S. Meyer, and K. P. Kepp. 2018. A Structural-chemical Explanation of Fungal Laccase Activity. Sci. Rep. 8(1): 1-16.

https://doi.org/10.1038/s41598-018-35633-8.

S. Datta, R. Veena, M. S. Samuel, and E. Selvarajan. 2021. Immobilization of Laccases and Applications for the Detection and Remediation of Pollutants: A Review. Environ. Chem. Lett. 19(1): 521-538.

https://doi.org/10.1007/s10311-020-01081-y.

A. Basso and S. Serban. 2019. Industrial Applications of Immobilized Enzymes-A Review. Mol. Catal. 479(September): 110607.

https://doi.org/10.1016/j.mcat.2019.110607.

R. O. Cristóvão et al. 2011. Enzymatic Immobilization of Commercial Laccase onto Green Coconut Fiber by Adsorption and its Application for Reactive Textile Dyes Degradation. J. Mol. Catal. B Enzym. 72: 6-12.

https://doi.org/10.1016/j.molcatb.2011.04.014.

L. Lonappan et al. 2018. Covalent Immobilization of Laccase on Citric Acid Functionalized Micro-biochars Derived from Different Feedstock and Removal of Diclofenac. Chem. Eng. J. 351(June): 985-994.

https://doi.org/10.1016/j.cej.2018.06.157.

J. Gill, V. Orsat, and S. Kermasha. 2018. Optimization of Encapsulation of a Microbial Laccase Enzymatic Extract using Selected Matrices. Process Biochem. 65(November): 55-61.

https://doi.org/10.1016/j.procbio.2017.11.011.

J. Hong, D. Jung, S. Park, Y. Oh, K. K. Oh, and S. H. Lee. 2021. Immobilization of Laccase via Cross-linked Enzyme Aggregates Prepared using Genipin as a Natural Cross-linker. Int. J. Biol. Macromol. 169: 541-550.

https://doi.org/10.1016/j.ijbiomac.2020.12.136.

C. Horn, D. Pospiech, P. J. Allertz, M. Müller, K. Salchert, and R. Hommel. 2021. Chemical Design of Hydrogels with Immobilized Laccase for the Reduction of Persistent Trace Compounds in Wastewater. ACS Appl. Polym. Mater. 3(5): 2823-2834.

https://doi.org/10.1021/acsapm.1c00380.

M. Bilal, Y. Zhao, T. Rasheed, and H. M. N. Iqbal. 2018. Magnetic Nanoparticles as Versatile Carriers for Enzymes Immobilization: A Review. Int. J. Biol. Macromol. 120: 2530-2544.

https://doi.org/10.1016/j.ijbiomac.2018.09.025.

M. Mahdavi et al. 2013. Synthesis, Surface Modification and Characterisation of Biocompatible Magnetic Iron Oxide Nanoparticles for Biomedical Applications. Molecules. 18(7): 7533-7548.

https://doi.org/10.3390/molecules18077533.

P. Biehl, M. von der Lühe, S. Dutz, and F. H. Schacher. 2018. Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers (Basel). 10(1).

https://doi.org/10.3390/polym10010091.

R. M. Robinson, M. Abdelmoula, M. Mallet, and R. Coustel. 2019. Starch Functionalized Magnetite Nanoparticles: New Insight into the Structural and Magnetic Properties. J. Solid State Chem. 277(June): 587-593.

https://doi.org/10.1016/j.jssc.2019.06.033.

S. A. Junejo, B. M. Flanagan, B. Zhang, and S. Dhital. 2022. Starch Structure and Nutritional Functionality - Past Revelations and Future Prospects. Carbohydr. Polym. 277(August 2021): 118837.

https://doi.org/10.1016/j.carbpol.2021.118837.

Y. Fan and F. Picchioni. 2020. Modification of Starch: A Review on the Application of 'Green' Solvents and Controlled Functionalization. Carbohydr. Polym. 241(April).

https://doi.org/10.1016/j.carbpol.2020.116350.

X. Qiu, Y. Wang, Y. Xue, W. Li, and Y. Hu. 2020. Laccase Immobilized on Magnetic Nanoparticles Modified by Amino-functionalized Ionic Liquid via Dialdehyde Starch for Phenolic Compounds Biodegradation. Chem. Eng. J. 391.

https://doi.org/10.1016/j.cej.2019.123564.

A. A. Kadam et al. 2020. Thiolation of Chitosan Loaded over Super-magnetic Halloysite Nanotubes for Enhanced Laccase Immobilization. Nanomaterials. 10(12): 1-20.

https://doi.org/10.3390/nano10122560.

N. A. Samak et al. 2018. CotA Laccase Immobilized on Functionalized Magnetic Graphene Oxide Nano-sheets for Efficient Biocatalysis. Mol. Catal. 445: 269-278.

https://doi.org/10.1016/j.mcat.2017.12.004.

E. Steen Redeker, D. T. Ta, D. Cortens, B. Billen, W. Guedens, and P. Adriaensens. 2013. Protein Engineering for Directed Immobilization. Bioconjug. Chem. 24(11): 1761-1777.

https://doi.org/10.1021/bc4002823.

T. Sulistyaningsih, J. S. Santosa, D. Siswanta, and B. Rusdiarso. 2017. Synthesis and Characterization of Magnetites Obtained from Mechanically and Sonochemically Assissted Co-precipitation and Reverse Co-precipitation Methods. Int. J. Mater. Mech. Manuf. 5(1): 16-19.

https://doi.org/10.18178/ijmmm.2017.5.1.280.

H. C. Roth, S. P. Schwaminger, M. Schindler, F. E. Wagner, and S. Berensmeier. 2015. Influencing Factors in the Co-precipitation Process of Superparamagnetic Iron Oxide Nano Particles: A Model-based Study. J. Magn. Magn. Mater. 377: 81-89.

https://doi.org/10.1016/j.jmmm.2014.10.074.

M. Harada, M. Kuwa, R. Sato, T. Teranishi, M. Takahashi, and S. Maenosono. 2020. Cation Distribution in Monodispersed MFe2O4(M = Mn, Fe, Co, Ni, and Zn) Nanoparticles Investigated by X-ray Absorption Fine Structure Spectroscopy: Implications for Magnetic Data Storage Catalysts, Sensors, and Ferrofluids. ACS Appl. Nano Mater. 3(8): 8389-8402.

https://doi.org/10.1021/acsanm.0c01810.

I. Sharifi, H. Shokrollahi, M. M. Doroodmand, and R. Safi. 2012. Magnetic and Structural Studies on CoFe2O4 Nanoparticles Synthesized by Co-precipitation, Normal Micelles and Reverse Micelles Methods. J. Magn. Magn. Mater. 324(10): 1854-1861.

https://doi.org/10.1016/j.jmmm.2012.01.015.

N. Mizutani, T. Iwasaki, S. Watano, T. Yanagida, H. Tanaka, and T. Kawai. 2008. Effect of Ferrous/ferric Ions Molar Ratio on Reaction Mechanism for Hydrothermal Synthesis of Magnetite Nanoparticles. Bull. Mater. Sci. 31(5): 713-717.

https://doi.org/10.1007/s12034-008-0112-3.

I. K. Ghosh, Z. Iqbal, S. Bhattacharya, and A. Bordoloi. 2020. Insight of Boron Induced Single-step Synthesis of Short-chain Olefins from Bio-derived Syngas. Fuel. 263(November): 116663.

https://doi.org/10.1016/j.fuel.2019.116663.

H. Jia et al. 2016. Immobilization of ω-transaminase by Magnetic PVA-Fe3O4 Nanoparticles. Biotechnol. Reports. 10: 49-55.

https://doi.org/10.1016/j.btre.2016.03.004.

S. Altun, B. Çakiroğlu, M. Özacar, and M. Özacar. 2015. A Facile and Effective Immobilization of Glucose Oxidase on Tannic Acid Modified CoFe2O4 Magnetic Nanoparticles. Colloids Surfaces B Biointerfaces. 136: 963-970.

https://doi.org/10.1016/j.colsurfb.2015.10.053.

T. Tarhan, A. Ulu, M. Sariçam, M. Çulha, and B. Ates. 2020. Maltose Functionalized Magnetic Core/shell Fe3O4@Au Nanoparticles for an Efficient L-asparaginase Immobilization. Int. J. Biol. Macromol. 142: 443-451.

https://doi.org/10.1016/j.ijbiomac.2019.09.116

J. Lu, Y. Li, H. Zhu, and G. Shi. 2021. SiO2-Coated Fe3O4 Nanoparticle/Polyacrylonitrile Beads for One-step Lipase Immobilization. ACS Appl. Nano Mater. 4(8): 7856-7869.

https://doi.org/10.1021/acsanm.1c01181.

H. Peidayesh, Z. Ahmadi, H. A. Khonakdar, M. Abdouss, and I. Chodák. 2020. Fabrication and Properties of Thermoplastic Starch/montmorillonite Composite using Dialdehyde Starch as a Crosslinker. Polym. Int. 69(3): 317-327.

https://doi.org/10.1002/pi.5955.

J. Yu, P. R. Chang, and X. Ma. 2010. The Preparation and Properties of Dialdehyde Starch and Thermoplastic Dialdehyde Starch. Carbohydr. Polym. 79(2): 296-300.

https://doi.org/10.1016/j.carbpol.2009.08.005.

M. R. Saboktakin, A. Maharramov, and M. A. Ramazanov. 2009. Synthesis and Characterization of Superparamagnetic Nanoparticles Coated with Carboxymethyl Starch (CMS) for Magnetic Resonance Imaging Technique. Carbohydr. Polym. 78(2): 292-295.

https://doi.org/10.1016/j.carbpol.2009.03.042.

Y. Zuo, W. Liu, J. Xiao, X. Zhao, Y. Zhu, and Y. Wu. 2017. Preparation and Characterization of Dialdehyde Starch by One-step Acid Hydrolysis and Oxidation. Int. J. Biol. Macromol. 103: 1257-1264.

https://doi.org/10.1016/j.ijbiomac.2017.05.188.

S. Das and M. K. Das. 2019. Synthesis and Characterization of Thiolated Jackfruit Seed Starch as a Colonic Drug Delivery Carrier. Int. J. Appl. Pharm. 11(3): 53-62. https://doi.org/10.22159/ijap.2019v11i3.31895.

S. Li, J. M. V. Mujyambereb, and M. Liu. 2011. Synthesis of Carboxymethyl Starch with High Degree of Substitution by a Modified Dry Process. Adv. Mater. Res. 233-235(August): 306-310.

https://doi.org/10.4028/www.scientific.net/AMR.233-235.306.

T. T. Dung, T. M. Danh, L. T. M. Hoa, D. M. Chien, and N. H. Duc. 2009. Structural and Magnetic Properties of Starch-coated Magnetite Nanoparticles. J. Exp. Nanosci. 4(3): 259-267.

https://doi.org/10.1080/17458080802570609.

A. Díaz-Hernández, J. Gracida, B. E. García-Almendárez, C. Regalado, R. Núñez, and A. Amaro-Reyes. 2018. Characterization of Magnetic Nanoparticles Coated with Chitosan: A Potential Approach for Enzyme Immobilization. J. Nanomater. 2018.

https://doi.org/10.1155/2018/9468574.

F. Gao and G. Ma. 2012. Effects of Microenvironment on Supported Enzymes. Top Catal. 55: 1114-1123.

https://doi.org/10.1007/s11244-012-9902-3.

D.-H. Zhang, L.-X. Yuwen, and L.-J. Peng. 2013. Parameters Affecting the Performance of Immobilized Enzyme. J. Chem. 2013: 1-7.

https://doi.org/10.1155/2013/946248.

C. Zhang and X. Cai. 2019. Immobilization of Horseradish Peroxidase on Fe3O4/nanotubes Composites for Biocatalysis-degradation of Phenol. Compos. Interfaces. 26(5): 379-396.

https://doi.org/10.1080/09276440.2018.1504265.

C. Algieri, L. Donato, and L. Giorno. 2016. Tyrosinase Immobilized on a Hydrophobic Membrane. Biotechnol. Appl. Biochem. 1-8.

https://doi.org/10.1002/bab.1462.

S. A. Mohamed, M. H. Al-Harbi, Y. Q. Almulaiky, I. H. Ibrahim, and R. M. El-Shishtawy. 2017. Immobilization of Horseradish Peroxidase on Fe3O4 Magnetic Nanoparticles. Electron. J. Biotechnol. 27: 84-90.

https://doi.org/10.1016/j.ejbt.2017.03.010.

N. Jailani, N. R. Jaafar, S. Suhaimi, M. M. Mackeen, F. D. A. Bakar, and R. M. Illias. 2022. Cross-linked Cyclodextrin Glucanotransferase Aggregates from Bacillus lehensis G1 for Cyclodextrin Production: Molecular Modeling, Developmental, Physicochemical, Kinetic and Thermodynamic Properties. Int. J. Biol. Macromol. 213(May): 516-533.

https://doi.org/10.1016/j.ijbiomac.2022.05.170.

M. Bilal, M. Asgher, H. Cheng, Y. Yan, and H. M. N. Iqbal. 2019. Multi-point Enzyme Immobilization, Surface Chemistry, and Novel Platforms: A Paradigm Shift in Biocatalyst Design. Crit. Rev. Biotechnol. 39(2): 202-219.

https://doi.org/10.1080/07388551.2018.1531822.

J. C. Y. Wu, C. H. Hutchings, M. J. Lindsay, C. J. Werner, and B. C. Bundy. 2015. Enhanced Enzyme Stability Through Site-Directed Covalent Immobilization. J. Biotechnol. 193: 83-90.

https://doi.org/10.1016/j.jbiotec.2014.10.039.

C. C. S. Fortes, A. L. Daniel-da-Silva, A. M. R. B. Xavier, and A. P. M. Tavares. 2017. Optimization of Enzyme Immobilization on Functionalized Magnetic Nanoparticles for Laccase Biocatalytic Reactions. Chem. Eng. Process. Process Intensif. 117(August): 1-8.

https://doi.org/10.1016/j.cep.2017.03.009.

X. Chen, B. He, M. Feng, D. Zhao, and J. Sun. 2020. Immobilized Laccase on Magnetic Nanoparticles for Enhanced Lignin Model Compounds Degradation. Chinese J. Chem. Eng. 28(8): 2152-2159.

https://doi.org/10.1016/j.cjche.2020.02.028.

S. Talekar, S. Nadar, A. Joshi, and G. Joshi. 2014. Pectin Cross-linked Enzyme Aggregates (pectin-CLEAs) of Glucoamylase. RSC Adv. 4(103): 59444-59453.

https://doi.org/10.1039/C4RA09552A.

J. O. Park, K. Y. Rhee, and S. J. Park. 2010. Silane Treatment of Fe3O4 and Its Effect on the Magnetic and Wear Properties of Fe3O4 /epoxy Nanocomposites. Appl. Surf. Sci. 256(23): 6945-6950.

https://doi.org/10.1016/j.apsusc.2010.04.110.

S. Anjum, T. Zeeshan, S. Waseem, I. Waseem, and Z. Mustafaz. 2022. Investigation of Cationic Distribution, Y-K Angles, and Optical and Dielectric Properties of as-synthesized Cerium-doped Cobalt nano-ferrites Prepared by Co-precipitation Method. Appl. Phys. A Mater. Sci. Process. 128(5): 1-13.

https://doi.org/10.1007/s00339-022-05470-8.

S. Asmat, Q. Husain, and M. S. Khan. 2018. A Polypyrrole-methyl Anthranilate Functionalized Worm-like Titanium Dioxide Nanocomposite as an Innovative Tool for Immobilization of Lipase: Preparation, Activity, Stability and Molecular Docking Investigations. New J. Chem. 42(1): 91-102.

https://doi.org/10.1039/C7NJ02951A.

A. Rajan, J. D. Sudha, and T. E. Abraham. 2008. Enzymatic Modification of Cassava Starch by Fungal Lipase. Ind. Crops Prod. 27(1): 50-59.

https://doi.org/10.1016/j.indcrop.2007.07.003.

Z. Wang et al. 2021. The Study of Laccase Immobilization Optimization and Stability Improvement on CTAB-KOH Modified Biochar. BMC Biotechnol. 21(1): 1-14.

https://doi.org/10.1186/s12896-021-00709-3.

J. Xu et al. 2013. Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization. Bull. Korean Chem. Soc. 34(8): 2408-2412.

https://doi.org/10.5012/bkcs.2013.34.8.2408.

A. Ali et al. 2021. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 9(July): 1-25.

https://doi.org/10.3389/fchem.2021.629054.

Downloads

Published

2023-09-17

Issue

Section

Science and Engineering

How to Cite

IN-SITU FABRICATION OF FUNCTIONALIZED STARCH MAGNETIC NANOPARTICLES FOR IMMOBILIZATION OF LACCASE . (2023). Jurnal Teknologi, 85(6), 169-179. https://doi.org/10.11113/jurnalteknologi.v85.20554