PREDICTION OF FATIGUE IN RAIL PAD USING SIMULATION

Authors

  • Muhammad Faiz Anuar Amran School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Abdul Malek Abdul Wahab Universiti Teknologi MARA https://orcid.org/0000-0003-0605-4117
  • Nor Fazli Adull Manan School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Yupiter Hp Manurung School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20559

Keywords:

Rail Pad, Finite Element Method, Fatigue, Hyper elastic, Toe Load

Abstract

The primary purpose of rail pads is to prevent cracking in concrete connections, which is assumed to be caused by the passing train's impact and vibration generated by movement from its wheels. To ensure the usage of rail pads is reliable and safe, failure and fatigue life prediction need to be done. However, analyzing fatigue conditions using the experimental method is time-consuming and costly. Thus, this work aims to develop a finite element model for analyzing the fatigue and life cycle of the rail pads. By using the simulation method, the time and cost of analyzing the process can be reduced. The rail fastening system model comprises a steel rail, rail pad, and concrete sleeper. The Mooney-Rivlin model was used to develop the rail pad, and the isotropic elasticity model was used for the steel rail and concrete sleeper. Using the modified Goodman theory, this study was able to estimate the fatigue life of the rail pad in terms of the number of cycles for a range of compressive forces and toe load. The findings show that a toe load at 18 kN shows more life cycle compared to a higher toe load of 35 kN with more than 50% difference. The life cycle also reduces as the load applies increases. This concludes that the fatigue life of the rail pad is greatly dependent on the toe load condition and compressive load. The rail pad is less durable under greater compressive load circumstances.

References

B. Suryatal, H. Phakatkar, K. Rajkumar, and P. Thavamani. 2015. Fatigue Life Estimation of an Elastomeric Pad by ε-N Curve and FEA. J. Surf. Eng. Mater. Adv. Technol. 5(2): 85-92. Doi: 10.4236/jsemat.2015.52010.

D. Sung and S. Hong. 2020. A Simple Method to Assess Replacement Period of Polyurethane Railpad in Urban Railway. Constr. Build. Mater. 248: 118607. Doi: 10.1016/j.conbuildmat.2020.118607.

S. Kaewunruen and A. M. Remennikov. 2008. An Alternative Rail Pad Tester for Measuring Dynamic Properties of Rail Pads Under Large Preloads. Experimental Mechanics. 48: 55-64. Doi: 10.1007/s11340-007-9059-3.

A. Kalliainen, P. Kolisoja, and A. Nurmikolu. 2016. 3D Finite Element Model as a Tool for Analyzing the Structural Behavior of a Railway Track. Procedia Eng. 143: 820-827. Doi: 10.1016/j.proeng.2016.06.133.

C. Ngamkhanong, Q. Y. Ming, T. Li, and S. Kaewunruen. 2020. Dynamic Train-track Interactions Over Railway Track Stiffness Transition Zones using Baseplate Fastening Systems. Eng. Fail. Anal. 118(May): 104866. Doi: 10.1016/j.engfailanal.2020.104866.

X. Ge, L. Ling, X. Yuan, and K. Wang. 2020. Effect of Distributed Support of Rail Pad on Vertical Vehicle-track Interactions. Constr. Build. Mater. 262: 120607. Doi: 10.1016/j.conbuildmat.2020.120607.

D. Ferreño et al. 2021. Prediction of Mechanical Properties of Rail Pads under In-service Conditions through Machine Learning Algorithms. Adv. Eng. Softw. 151(July 2020). Doi: 10.1016/j.advengsoft.2020.102927.

Z. Zhang, B. Andrawes, and R. E. J. 2015. Parametric Study on the Distribution of Longitudinal Load in Railway Track under Dynamic Wheel Loading Using Finite Element Analysis. Int. J. Civ. Eng. 2(5): 13-27. Doi: 10.14445/23488352/ijce-v2i5p106.

J. Pombo and J. Ambrósio. 2012. An Alternative Method to Include Track Irregularities in Railway Vehicle Dynamic Analyses. Nonlinear Dyn. 68(1-2): 161-176. Doi: 10.1007/s11071-011-0212-2.

M. Sol-Sánchez, F. Moreno-Navarro, and M. C. Rubio-Gámez. 2014. The Use of Deconstructed Tire Rail Pads in Railroad Tracks: Impact of Pad Thickness. Mater. Des. 58: 198-203. Doi: 10.1016/j.matdes.2014.01.062.

J. Chen and Y. Zhou. 2020. Dynamic Vertical Displacement for Ballastless Track-subgrade System under High-speed Train Moving Loads. Soil Dyn. Earthq. Eng. 129(November 2019): 105911. Doi: 10.1016/j.soildyn.2019.105911.

K. Wei, F. Wang, P. Wang, Z. X. Liu, and P. Zhang. 2017. Effect of Temperature- and Frequency-dependent Dynamic Properties of Rail Pads on High-speed Vehicle–track Coupled Vibrations. Veh. Syst. Dyn. 55(3): 351-370. Doi: 10.1080/00423114.2016.1267371.

E. Koch, P. Hudacsek, R. Szepesházi, and O. Kegyes-Brassai. 2018. 3D Modelling of Train-track Interaction at Bridge Transition. Ce/Papers. 2(2-3): 695-700. Doi: 10.1002/cepa.751.

B. Yenigun, E. Gkouti, A. Czekanski, G. Barbaraci, and K. P. Jankowski. 2020. Comparison of Elasto-Mechanical Behavior of Rubbers. Conference: Canadian Society for Mechanical Engineering International Congress.

S. G. Koroma, M. F. M. Hussein, and J. S. Owen. 2015. Influence of Preload and Nonlinearity of Railpads on Vibration of Railway Tracks under Stationary and Moving Harmonic Loads. J. Low Freq. Noise Vib. Act. Control. 34(3): 289-306. Doi: 10.1260/0263-0923.34.3.289.

S. C. Yang, H. H. Kim, and J. S. Kong. 2017. Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems. J. Korean Soc. Railw. 20(4): 521-528. Doi: 10.7782/JKSR.2017.20.4.521.

Y. Liu, H. P. Yin, Y. Luo, and J. Zhang. 2018. Finite Element Analysis and Experimental Investigation of Nonlinear Features of Rail Fastening Systems. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 232(3): 873-894. Doi: 10.1177/0954409717701779.

M. I. H. Othman, A. M. A. Wahab, M. S. Hadi, and N. M. Noor. 2022. Assessing the Nonlinear Static Stiffness of Rail Pad using Finite Element Method. J. Vibroengineering. 24(5): 921-935. Doi: 10.21595/jve.2022.22293.

A. Ali, M. Hosseini, and B. B. Sahari. 2009. Fatigue Life Modeling For Elastomeric Materials: A Review. Int. Rev. Mech. Eng. 3(3): 332–338. Doi: 10.15866/ireamt.v2i1.1143.

J. A. Sainz-Aja, I. A. Carrascal, D. Ferreño, J. Pombo, J. A. Casado, and S. Diego. 2020. Influence of the Operational Conditions on Static and Dynamic Stiffness of Rail Pads. Mech. Mater. 148(June). Doi: 10.1016/j.mechmat.2020.103505.

B. M. Klingner and J. R. Shewchuk. 2008. Aggressive tetrahedral Mesh Improvement. Proc. 16th Int. Meshing Roundtable, IMR 2007. 3-23. Doi: 10.1007/978-3-540-75103-8_1.

B. Kim et al. 2012. A Comparison among Neo-Hookean Model, Mooney-Rivlin Model, and Ogden Model for Chloroprene Rubber. Int. J. Precis. Eng. Manuf. 13(5): 759-764. Doi: 10.1007/s12541-012-0099-y.

H. B. Khaniki, M. H. Ghayesh, R. Chin, and M. Amabili. 2022. A Review on the Nonlinear Dynamics of Hyperelastic Structures. Nonlinear Dyn. 110: 963-994. Doi: 10.1007/s11071-022-07700-3.

E. Kabo, J. C. O. Nielsen, and A. Ekberg. 2006. Prediction of Dynamic Train-track Interaction and Subsequent Material Deterioration in the Presence of Insulated Rail Joints. Veh. Syst. Dyn. 44(SUPPL. 1): 718-729. Doi: 10.1080/00423110600885715.

H. Patil and P. V. Jeyakarthikeyan. 2018. Mesh Convergence Study and Estimation of Discretization Error of Hub in Clutch Disc with Integration of ANSYS. IOP Conf. Ser. Mater. Sci. Eng. 402(1). Doi: 10.1088/1757-899X/402/1/012065.

L. Chen, C. Yang, H. Wang, D. T. Branson, J. S. Dai, and R. Kang. 2018. Design and Modeling of a Soft Robotic Surface with Hyperelastic Material. Mech. Mach. Theory. 130: 109-122. Doi: 10.1016/j.mechmachtheory.2018.08.010.

Downloads

Published

2023-11-18

Issue

Section

Science and Engineering

How to Cite

PREDICTION OF FATIGUE IN RAIL PAD USING SIMULATION . (2023). Jurnal Teknologi (Sciences & Engineering), 86(1), 115-123. https://doi.org/10.11113/jurnalteknologi.v86.20559