• Mohd Khalizan Sabullah Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Rahmath Abdullah Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Roslina Jawan Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Lucky Goh Poh Wah Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Hartinie Marbawi Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Syed Umar Faruq Syed Najmuddin Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Jualang Azlan Gansau Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Mohd Yunus Syukor abatan Biokimia, Fakulti Bioteknologi dan Sains Biomolekul, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia




Biosensor, reversible inhibitor, irreversible inhibitor, enzyme, lineweaverburk plot


In this article, the latest discoveries in the development of biosensors based on enzyme inhibition are reviewed. Due to their excellent selectivity and sensitivity, they represent a significant alternative method to conventional analytical methods; which is a method of analysis that only relies on the generation of instrumentation data without any preliminary screening. Basically, biosensors are able to convert biological activity into a quantifiable signal. These enzyme inhibition-based biosensors have a wide range of applications in the fields of environmental safety, food safety, and clinical analysis since toxic substances containing heavy metals and pesticides are the most effective inhibitors of enzymes. This paper is aimed at exploring the methods used and the sensitivity to various inhibitors for biosensors based on the inhibition of enzymes such as glucose oxidase, urease, tyrosinase, cholinesterase, and other enzymes.


El Harrad, L., Bourais, I., Mohammadi, H., & Amine, A. 2018. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications. Sensors (Basel, Switzerland). 18(1): 164. https://doi.org/10.3390/s18010164.

Rocchitta, G., Spanu, A., Babudieri, S., Latte, G., Madeddu, G., Galleri, G., Serra, P. A. 2016. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. Sensors (Basel, Switzerland). 16(6): 780. https://doi.org/10.3390/s16060780.

Kucherenko, I. S., Soldatkin, O. O., Dzyadevych, S. V., & Soldatkin, A. P. 2020. Electrochemical Biosensors based on Multienzyme Systems: Main Groups, Advantages and Limitations – A Review. Analytica Chimica Acta. 1111: 114-131. https://doi.org/10.1016/j.aca.2020.03.034.

Clark, L. C., & Lyons, C. 1962. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Annals of the New York Academy of Sciences. 102: 29-45.

Doi: https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.

Fapyane, D., Berillo, D., Marty, J. L., & Revsbech, N. P. 2020. Urea Biosensor Based on a CO2 Microsensor. ACS Omega. 5(42): 27582-27590.

Doi: https://doi.org/10.1021/acsomega.0c04146.

Rahman, M. M. 2014. Reusable and Mediator-Free Cholesterol Biosensor Based on Cholesterol Oxidase Immobilized onto TGA-SAM Modified Smart Bio-chips. PLOS ONE. 9(6): e100327.

Doi: https://doi.org/10.1371/journal.pone.0100327.

Pontius, K., Semenova, D., Silina, Y. E., Gernaey, K. V., & Junicke, H. 2020. Automated Electrochemical Glucose Biosensor Platform as an Efficient Tool Toward On-Line Fermentation Monitoring: Novel Application Approaches and Insights. Frontiers in Bioengineering and Biotechnology. 8.

Khalidi, S. A. M., Sabullah, M. K., Gansau, J. A., Faik, A. A. M., Sani, S. A., Jawan, R., Shukor, M. Y. 2022. Enzyme Inhibition-based Biosensors using Acetylcholinesterase from Monopterus albus for Detection of Carbamates Contamination. Journal of Physics: Conference Series. 2314(1): 012021.

Doi: https://doi.org/10.1088/1742-6596/2314/1/012021.

Bucur, B., Purcarea, C., Andreescu, S., & Vasilescu, A. 2021. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. Sensors. 21(9): 3038.

Doi: https://doi.org/10.3390/s21093038.

Sabullah, M. K. 2020. Pembangunan Biopenderia Enzim Berasaskan Kolinasterase untuk Mengesan Kehadiran Bahan Cemar seperti Racun Serangga dan Logam Berat. Sains Malaysiana. 49(11): 2659-2665.

Sabullah, M. K., Sulaiman, M. R., Shukor, M. Y. A., Shamaan, N. A., Khalid, A., & Ahmad, S. A. 2015. In Vitro and In Vivo Effects of Puntius javanicus Cholinesterase by Copper. Fresenius Environmental Bulletin. 24(12B): 4615-4621.

Sabullah, M. K., Ahmad, S. A., Shukor, M. Y., Shamaan, N. A., Khalid, A., Gansau, A. J., Sulaiman, M. R. 2015. Acetylcholinesterase from Puntius javanicus for the Detection of Carbamates and Organophosphates. Journal of Chemical and Pharmaceutical Sciences: 8(2): 348-353.

Ahmad, S. A., Sabullah, M. K., Basirun, A. A., Khalid, A., Yasid, N. A., Iqbal, I. M., Shukor, M. Y. 2016. Evaluation of Cholinesterase from the Muscle and Blood of Anabas testudineus as Detection of Metal Ions. Fresenius Environmental Bulletin. 25(10): 4253-4260.

Kitz, R., & Wilson, I. B. 1962. Esters of Methanesulfonic Acid as Irreversible Inhibitors of Acetylcholinesterase. The Journal of Biological Chemistry. 237: 3245-3249.

Siddiqui, K. S., Ertan, H., Poljak, A., & Bridge, W. J. 2022. Evaluating Enzymatic Productivity—The Missing Link to Enzyme Utility. International Journal of Molecular Sciences. 23(13): 6908.

Doi: https://doi.org/10.3390/ijms23136908.

Han, S., Zhu, M., Yuan, Z., & Li, X. 2001. A Methylene Blue-mediated Enzyme Electrode for the Determination of Trace Mercury(II), Mercury(I), Methylmercury, and Mercury–glutathione Complex. Biosensors and Bioelectronics. 16(1): 9-16.

Doi: https://doi.org/10.1016/S0956-5663(00)00114-7.

Zhang, S., Zhao, H., & John, R. 2001. A Theoretical Model for Immobilized Enzyme Inhibition Biosensors. Electroanalysis. 13(18): 1528-1534.

Doi: https://doi.org/10.1002/1521-4109(200112)13:18<1528::AID-ELAN1528>3.0.CO;2-1.

Yadav, J., Paragas, E., Korzekwa, K., & Nagar, S. 2020. Time-dependent Enzyme Inactivation: Numerical Analyses of in Vitro Data and Prediction of Drug-drug Interactions. Pharmacology & therapeutics. 206: 107449.

Doi: https://doi.org/10.1016/j.pharmthera.2019.107449.

Aidil, M. S., Sabullah, M. K., Halmi, M. I. E., Sulaiman, R., Shukor, M. S., Shukor, M. Y., Syahir, A. 2013. Assay for Heavy Metals using an Inhibitive Assay based on the Acetylcholinesterase from Pangasius Hypophthalmus (Sauvage, 1878). Fresenius Environmental Bulletin. 22(12): 3572-3576.

Ghica, M. E., Carvalho, R. C., Amine, A., & Brett, C. M. A. 2013. Glucose Oxidase Enzyme Inhibition Sensors for Heavy Metals at Carbon Film Electrodes Modified with Cobalt or Copper Hexacyanoferrate. Sensors and Actuators B: Chemical. 178: 270-278.

Doi: https://doi.org/10.1016/j.snb.2012.12.113.

Nordin, N., Abdulla, R., Ahmad, S. A., & Sabullah, M. K. 2021. Acetylcholinesterase (AChE) of Diodon Hystrix Brain as an Alternative Biomolecule in Heavy Metals Biosensing. Journal of Applied Science and Engineering. 25(3): 473-480.

Doi: https://doi.org/10.6180/jase.202206_25(3).0014

Attaallah, R., & Amine, A. 2021. The Kinetic and Analytical Aspects of Enzyme Competitive Inhibition: Sensing of Tyrosinase Inhibitors. Biosensors. 11(9): 322.

Doi: https://doi.org/10.3390/bios11090322.

Mohd Razib, M. S., Latip, W., Abdul Rashid, J. I., Knight, V. F., Wan Yunus, W. M. Z., Ong, K. K., Mohd Noor, S. A. 2021. An Enzyme-Based Biosensor for the Detection of Organophosphate Compounds Using Mutant Phosphotriesterase Immobilized onto Reduced Graphene Oxide. Journal of Chemistry. 2021: e2231089.

Doi: https://doi.org/10.1155/2021/2231089.

Narayanan, M. M., Nair, C. B., Sanjeeva, S. K., Rao, P. S., Pullela, P. K., & Barrow, C. J. 2013. Design of Multiligand Inhibitors for the Swine flu H1N1 Neuraminidase Binding Site. Advances and Applications in Bioinformatics and Chemistry: AABC. 6: 47-53.

Doi: https://doi.org/10.2147/AABC.S49503.

Fiedorowicz, J. G., & Swartz, K. L. 2004. The Role of Monoamine Oxidase Inhibitors in Current Psychiatric Practice. Journal of Psychiatric Practice. 10(4): 239-248.

Rodríguez-Delgado, M. M., Alemán-Nava, G. S., Rodríguez-Delgado, J. M., Dieck-Assad, G., Martínez-Chapa, S. O., Barceló, D., & Parra, R. 2015. Laccase-based Biosensors for Detection of Phenolic Compounds. TrAC Trends in Analytical Chemistry. 74: 21-45.

Doi: https://doi.org/10.1016/j.trac.2015.05.008.

Hayat, N. M., Ahmad, S. A., Shamaan, N. A., Jlah, M. K. S., Shukor, M. Y. A., Syed, M. A., Dahalan, F. A. 2017. Characterisation of Cholinesterase from Kidney Tissue of Asian Seabass (Lates calcarifer) and Its Inhibition in Presence of Metal Ions. Journal of Environmental Biology. 38(3): 383-388.

Doi: https://doi.org/10.22438/jeb/38/3/MRN-987.

Shukor, Y., Baharom, N. A., Rahman, F. Abd., Abdullah, Mohd. P., Shamaan, N. A., & Syed, Mohd. A. 2006. Development of a Heavy Metals Enzymatic-based Assay using Papain. Analytica Chimica Acta. 566(2): 283-289.

Doi: https://doi.org/10.1016/j.aca.2006.03.001.

Guo, M., & Wang, G. 2016. Milk Protein Polymer and Its Application in Environmentally Safe Adhesives. Polymers. 8(9): 324.

Doi: https://doi.org/10.3390/polym8090324.

Lowe, G. 1976. The Cysteine Proteinases. Tetrahedron. 32(3): 291-302.

Doi: https://doi.org/10.1016/0040-4020(76)80040-3.

Shouket, H. A., Ameen, I., Tursunov, O., Kholikova, K., Pirimov, O., Kurbonov, N., Mukimov, B. 2020. Study on Industrial Applications of Papain: A Succinct Review. IOP Conference Series: Earth and Environmental Science. 614(1): 012171.

Doi: https://doi.org/10.1088/1755-1315/614/1/012171.

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. 2021. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology. 12.


Witkowska, D., Słowik, J., & Chilicka, K. 2021. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules. 26(19): 6060.

Doi: https://doi.org/10.3390/molecules26196060.

Lai, C., Qin, L., Zeng, G., Liu, Y., Huang, D., Zhang, C., Wang, M. 2016. Sensitive and Selective Detection of Mercury Ions based on Papain and 2,6-pyridinedicarboxylic Acid Functionalized Gold Nanoparticles. RSC Advances. 6(4): 3259-3266.

Doi: https://doi.org/10.1039/C5RA23157D.

Shukor, M. Y., Masdor, N., Baharom, N. A., Jamal, J. A., Abdullah, M. P. A., Shamaan, N. A., & Syed, M. A. 2008. An Inhibitive Determination Method for Heavy Metals using Bromelain, a Cysteine Protease. Applied Biochemistry and Biotechnology. 144(3): 283-291.

Doi: https://doi.org/10.1007/s12010-007-8063-5.

Baskaran, G., Masdor, N. A., Syed, M. A., & Shukor, M. Y. 2013. An Inhibitive Enzyme Assay to Detect Mercury and Zinc Using Protease from Coriandrum sativum. The Scientific World Journal. 2013: e678356.

Doi: https://doi.org/10.1155/2013/678356.

Uba, G., Manogaran, M., Gunasekaran, B., Halmi, M. I. E., & Shukor, M. Y. A. 2020. Improvement of Ficin-Based Inhibitive Enzyme Assay for Toxic Metals Using Response Surface Methodology and Its Application for Near Real-Time Monitoring of Mercury in Marine Waters. International Journal of Environmental Research and Public Health. 17(22): 8585.

Doi: https://doi.org/10.3390/ijerph17228585.

Tarek, H., Nam, K. B., Kim, Y. K., Suchi, S. A., & Yoo, J. C. 2023. Biochemical Characterization and Application of a Detergent Stable, Antimicrobial and Antibiofilm Potential Protease from Bacillus siamensis. International Journal of Molecular Sciences. 24(6): 5774. https://doi.org/10.3390/ijms24065774.

Holmquist, M. 2000. Alpha/Beta-hydrolase Fold Enzymes: Structures, Functions and Mechanisms. Current Protein & Peptide Science. 1(2): 209-235.

Doi: https://doi.org/10.2174/1389203003381405.

Lenfant, N., Hotelier, T., Bourne, Y., Marchot, P., & Chatonnet, A. 2013. Proteins with an Alpha/Beta Hydrolase Fold: Relationships between Subfamilies in an Ever-growing Superfamily. Chemico-Biological Interactions. 203(1): 266-268.

Doi: https://doi.org/10.1016/j.cbi.2012.09.003.

Falugi, C. 2012. Early Appearance and Possible Functions of Non-neuromuscular Cholinesterase Activities. Frontiers in Molecular Neuroscience. 5.


Groner, E., Ashani, Y., Schorer-Apelbaum, D., Sterling, J., Herzig, Y., & Weinstock, M. 2007. The Kinetics of Inhibition of Human Acetylcholinesterase and Butyrylcholinesterase by Two Series of Novel Carbamates. Molecular Pharmacology. 71(6): 1610-1617.

Doi: https://doi.org/10.1124/mol.107.033928.

Smith, P. N., Mao, L., Sinha, K., & Russell, A. J. 2021. Organophosphate Detoxification by Membrane-engineered Red Blood Cells. Acta Biomaterialia. 124: 270-281.

Doi: https://doi.org/10.1016/j.actbio.2021.01.043.

Jaffrezic-Renault, N. 2001. New Trends in Biosensors for Organophosphorus Pesticides. Sensors. 1(2): 60-74.

Doi: https://doi.org/10.3390/s10100060.

Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. 1961. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology. 7(2): 88-95.

Doi: https://doi.org/10.1016/0006-2952(61)90145-9.

Basirun, A. A., Ahmad, S. A., Yasid, N. A., Sabullah, M. K., Daud, H. M., Sha’arani, S., Shukor, M. Y. 2019. Toxicological Effects and Behavioural and Biochemical Responses of Oreochromis Mossambicus Gills and Its Cholinesterase to Copper: A Biomarker Application. International Journal of Environmental Science and Technology. 16(2): 887-898.

Doi: https://doi.org/10.1007/s13762-018-1711-1.

Han, E., Yang, Y., He, Z., Cai, J., Zhang, X., & Dong, X. 2015. Development of Tyrosinase Biosensor based on Quantum Dots/chitosan Nanocomposite for Detection of Phenolic Compounds. Analytical Biochemistry. 486: 102-106.

Doi: https://doi.org/10.1016/j.ab.2015.07.001.

Haddaoui, M., & Raouafi, N. 2015. Chlortoluron-induced Enzymatic Activity Inhibition in Tyrosinase/ZnO NPs/SPCE Biosensor for the Detection of Ppb Levels of Herbicide. Sensors and Actuators B: Chemical. 219: 171-178.

Doi: https://doi.org/10.1016/j.snb.2015.05.023.

Arduini, F., Cinti, S., Caratelli, V., Amendola, L., Palleschi, G., & Moscone, D. 2019. Origami Multiple Paper-based Electrochemical Biosensors for Pesticide Detection. Biosensors and Bioelectronics. 126: 346-354.

Doi: https://doi.org/10.1016/j.bios.2018.10.014.

Erkmen, C., Kurbanoglu, S., & Uslu, B. 2020. Fabrication of Poly(3,4-ethylenedioxythiophene)-iridium Oxide Nanocomposite based Tyrosinase Biosensor for the Dual Detection of Catechol and Azinphos Methyl. Sensors and Actuators B: Chemical. 316: 128121.

Doi: https://doi.org/10.1016/j.snb.2020.128121.

Wang, D., Liu, D., Duan, H., Xu, Y., Zhou, Z., & Wang, P. 2020. Catechol Dyes–Tyrosinase System for Colorimetric Determination and Discrimination of Dithiocarbamate Pesticides. Journal of Agricultural and Food Chemistry. 68(34): 9252-9259.

Doi: https://doi.org/10.1021/acs.jafc.0c03352.

Tanimoto de Albuquerque, Y. D., & Ferreira, L. F. 2007. Amperometric Biosensing of Carbamate and Organophosphate Pesticides Utilizing Screen-printed Tyrosinase-modified Electrodes. Analytica Chimica Acta. 596(2): 210-221.

Doi: https://doi.org/10.1016/j.aca.2007.06.013.

Sok, V., & Fragoso, A. 2019. Amperometric Biosensor for Glyphosate based on the Inhibition of Tyrosinase Conjugated to Carbon Nano-onions in a Chitosan Matrix on a Screen-printed Electrode. Microchimica Acta. 186(8): 569. https://doi.org/10.1007/s00604-019-3672-6.

Campanella, L., Dragone, R., Lelo, D., Martini, E., & Tomassetti, M. 2006. Tyrosinase Inhibition Organic Phase Biosensor for Triazinic and Benzotriazinic Pesticide Analysis (Part Two). Analytical and Bioanalytical Chemistry. 384(4): 915-921.

Doi: https://doi.org/10.1007/s00216-005-0175-6.

Asav, E., Yorganci, E., & Akyilmaz, E. 2009. An Inhibition Type Amperometric Biosensor based on Tyrosinase Enzyme for Fluoride Determination. Talanta. 78(2): 553-556.

Doi: https://doi.org/10.1016/j.talanta.2008.12.010.

Carralero, V., Mena, M. L., Gonzalez-Cortés, A., Yáñez-Sedeño, P., & Pingarrón, J. M. 2006. Development of a High Analytical Performance-tyrosinase Biosensor based on a Composite Graphite–Teflon Electrode Modified with Gold Nanoparticles. Biosensors and Bioelectronics. 22(5): 730-736.

Doi: https://doi.org/10.1016/j.bios.2006.02.012.

Solé, S., Merkoçi, A., & Alegret, S. 2003. Determination of Toxic Substances Based on Enzyme Inhibition. Part I. Electrochemical Biosensors for the Determination of Pesticides Using Batch Procedures. Critical Reviews in Analytical Chemistry. 33(2): 89-126.

Doi: https://doi.org/10.1080/727072334.

Sassolas, A., Prieto-Simón, B., & Marty, J. L. 2012. Biosensors for Pesticide Detection: New Trends. American Journal of Analytical Chemistry. 3(3): 210-232.

Doi: https://doi.org/10.4236/ajac.2012.33030.

Kaur, H., Kumar, S., & Verma, N. 2014. Enzyme-based Colorimetric and Potentiometric Biosensor for Detecting Pb (II) Ions in Milk. Brazilian Archives of Biology and Technology. 57: 613-619.

Doi: https://doi.org/10.1590/S1516-8913201402160.

Do, J. S., & Lin, K. H. 2016. Kinetics of Urease Inhibition-based Amperometric Biosensors for Mercury and Lead Ions Detection. Journal of the Taiwan Institute of Chemical Engineers. 63: 25-32.

Doi: https://doi.org/10.1016/j.jtice.2016.03.011.

Rigo, A. A., Cezaro, A. M. de, Muenchen, D. K., Martinazzo, J., Brezolin, A. N., Hoehne, L., Steffens, C. 2020. Cantilever Nanobiosensor based on the Enzyme Urease for Detection of Heavy Metals. Brazilian Journal of Chemical Engineering, 36: 1429-1437.

Doi: https://doi.org/10.1590/0104-6632.20190364s20190035.

Lee, S. M., & Lee, W. Y. 2002. Determination of Heavy Metal Inos Using Conductometric Biosensor Based on Sol-Gel Immobilized Urease. Bulletin of the Korean Chemical Society. 23(8): 1169-1172.

Doi: https://doi.org/10.5012/bkcs.2002.23.8.1169.

Shyuan, L. K., Heng, L. Y., Ahmad, M., Aziz, S. A., & Ishak, Z. 2008. Biopenderia Elektrokimia Berasaskan Enzim Alkaline Fosfatase Terpegun untuk Pengesanan Ketoksikan Asid 2,4-Diklorofenoksiasetik. Malaysian Journal of Analytical Sciences. 12(2): 473-479.

Besombes, J.-L., Cosnier, S., Labbé, P., & Reverdy, G. 1995. A Biosensor as Warning Device for the Detection of Cyanide, Chlorophenols, Atrazine and Carbamate Pesticides. Analytica Chimica Acta. 311(3): 255-263.

Doi: https://doi.org/10.1016/0003-2670(94)00686-G.

Garcı́a Sánchez, F., Navas Dı́az, A., Ramos Peinado, M. C., & Belledone, C. 2003. Free and Sol–gel Immobilized Alkaline Phosphatase-based Biosensor for the Determination of Pesticides and Inorganic Compounds. Analytica Chimica Acta. 484(1): 45-51.

Doi: https://doi.org/10.1016/S0003-2670(03)00310-6.

Samphao, A., Suebsanoh, P., Wongsa, Y., Pekec, B., Jitchareon, J., & Kalcher, and. 2013. Alkaline Phosphatase Inhibition-based Amperometric Biosensor for the Detection of Carbofuran. International Journal of Electrochemical Science. 8.

Gianvittorio, S., Gualandi, I., & Tonelli, D. 2023. ALP-Based Biosensors Employing Electrodes Modified with Carbon Nanomaterials for Pesticides Detection. Molecules. 28(4): 1532.

Doi: https://doi.org/10.3390/molecules28041532.

Dong, J., Yang, H., Li, Y., Liu, A., Wei, W., & Liu, S. 2020. Fluorescence Sensor for Organophosphorus Pesticide Detection based on the Alkaline Phosphatase-triggered Reaction. Analytica Chimica Acta. 1131: 102-108.

Doi: https://doi.org/10.1016/j.aca.2020.07.048.

Zapp, E., Brondani, D., Vieira, I. C., Scheeren, C. W., Dupont, J., Barbosa, A. M. J., & Ferreira, V. S. 2011. Biomonitoring of Methomyl Pesticide by Laccase Inhibition on Sensor Containing Platinum Nanoparticles in Ionic Liquid Phase Supported in Montmorillonite. Sensors and Actuators B: Chemical. 155(1): 331-339.

Doi: https://doi.org/10.1016/j.snb.2011.04.015.

Oliveira, T. M. B. F., Fátima Barroso, M., Morais, S., de Lima-Neto, P., Correia, A. N., Oliveira, M. B. P. P., & Delerue-Matos, C. 2013. Biosensor based on Multi-walled Carbon Nanotubes Paste Electrode Modified with Laccase for Pirimicarb Pesticide Quantification. Talanta. 106: 137-143.

Doi: https://doi.org/10.1016/j.talanta.2012.12.017.

Ribeiro, F. W. P., Barroso, M. F., Morais, S., Viswanathan, S., de Lima-Neto, P., Correia, A. N., Delerue-Matos, C. 2014. Simple Laccase-based Biosensor for Formetanate Hydrochloride Quantification in Fruits. Bioelectrochemistry. 95: 7-14.

Doi: https://doi.org/10.1016/j.bioelechem.2013.09.005.

Bhalla, N., Jolly, P., Formisano, N., & Estrela, P. 2016. Introduction to Biosensors. Essays in Biochemistry. 60(1): 1-8.

Doi: https://doi.org/10.1042/EBC20150001.

Martens, D., & Bienstman, P. 2019. Study on the Limit of Detection in MZI-based Biosensor Systems. Scientific Reports. 9(1): 5767.

Doi: https://doi.org/10.1038/s41598-019-42305-8.

Robinson, P. K. 2015. Enzymes: Principles and Biotechnological Applications. Essays in Biochemistry. 59: 1-41.

Doi: https://doi.org/10.1042/bse0590001.

Nguyen, H. H., Lee, S. H., Lee, U. J., Fermin, C. D., & Kim, M. 2019. Immobilized Enzymes in Biosensor Applications. Materials. 12(1): 121.

Doi: https://doi.org/10.3390/ma12010121.






Science and Engineering

How to Cite