APPLICATION OF IMAGE DIGITAL PROCESSING TO EVALUATE ACCURACY IN PREDICTING ROCK FRAGMENTATION INDUCED BY BLASTING

Authors

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20743

Keywords:

Fragmentation, Kuz-Ram, Split Desktop, andesite, blasting

Abstract

Predicting rock fragmentation induced by blasting operation is important in order to evaluate the success of blasting operation. It is necessary to select a method that is in accordance with the characteristics of geological condition and rock mass so that it can quickly provide accurate information. This study aims to evaluate whether Kuz-Ram model is accurate enough in predicting fragmentation of andesite. The analysis was carried out statistically by comparing the andesite fragmentation based on theoretical calculation method by Kuz-Ram model to the fragmentation based on image analysis method by Split Desktop which represents the actual field condition. The data were obtained from 30 blasting operations on andesite. The analysis result shows that the fragmentation based on the theoretical calculation using Kuz-Ram model is not significantly different from the fragmentation based on Split Desktop. The maximum error of percent passing predicted by Kuz-Ram model is around 7% with an average error of 4.94%. Based on the result, calculation using Kuz-Ram theory can be performed to predict fragmentation of andesite.

References

Hekmat, A., Munoz, S., and Gomez, R. 2019. Prediction of Rock Fragmentation Based on A Modified Kuz-Ram Model. Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection - MPES 2018. 69-79.

Doi: http://dx.doi.org/10.1007/978-3-319-99220-4_6.

Gheibie, S., Aghababaei, H., Hoseinie, S. H., and Pourrahimian, Y. 2009. Modified Kuz—Ram Fragmentation Model and Its Use at The Sungun Copper Mine. International Journal of Rock Mechanics and Mining Science. 46: 967-973.

Doi: http://dx.doi.org/10.1016/j.ijrmms.2009.05.003.

Akbari, M., Lashkaripour, G., Bafghi, A. Y., and Ghafoori, M. 2015. Blastability Evaluation for Rock Mass Fragmentation in Iran Central Iron Ore Mines. International Journal of Mining Science and Technology. 25(1): 59-66.

Doi: http://dx.doi.org/10.1016/j.ijmst.2014.11.008.

Mutinda, E. K., Alunda, B. O., Maina, D. K., and Kasomo, R. M. 2021. Prediction of Rock Fragmentation Using the Kuznetsov-Cunningham-Ouchterlony Model. Journal of the Southern African Institute of Mining and Metallurgy. 121(3):107-112.

Doi: http://dx.doi.org/10.17159/2411-9717/1401/2021.

Han, J-H., and Song, J-J. 2014. Statistical Estimation of Blast Fragmentation by Applying Stereophotogrammetry to Block Piles. International Journal of Rock Mechanics and Mining Sciences. 68: 150-158.

Doi: http://dx.doi.org/10.1016/j.ijrmms.2014.02.010.

Elahi, A. T., and Hosseini, M. 2017. Analysis of Blasted Rocks Fragmentation Using Digital Image Processing (Case Study: Limestone Quarry of Abyek Cement Company). International Journal of Geo-Engineering. 8: 16.

Doi: http://dx.doi.org/10.1186/s40703-017-0053-z.

Souza, J. C. d., Silva, A. C. S. d., and Rocha, S. S. 2018. Analysis of Blasting Rocks Prediction and Rock Fragmentation Results Using Split-Desktop Software. Tecnologia em Metalurgia, Materiais e Mineração. 15(1): 22-30.

Doi: http://dx.doi.org/10.4322/2176-1523.1234.

Idowu, K. A., Olaleye, B. M., and Saliu, M. A. 2021. Application of Split Desktop Image Analysis and Kuz-Ram Empirical Model for Evaluation of Blast Fragmentation Efficiency in A Typical Granite Quarry. Ghana Mining Journal. 21(1): 45-52.

Doi: http://dx.doi.org/10.4314/gm.v21i1.5.

Jug, J., Strelec, S., Gazdek, M., and Kavur, B. 2017. Fragment Size Distribution of Blasted Rock Mass. IOP Conference Series: Earth and Environmental Science. 95(4): 042013.

Doi: http://dx.doi.org/10.1088/1755-1315/95/4/042013.

Azadmehr, A., Jalali, S. M. E., and Pourrahimian, Y. 2019. An Application of Rock Engineering System for Assessment of The Rock Mass Fragmentation: A Hybrid Approach and Case Study. Rock Mechanics and Rock Engineering. 52: 4403-4419.

Doi: http://dx.doi.org/10.1007/s00603-019-01848-y.

Tao, J., Yang, X-G., Li, H-T., Zhou, J-W., Qi, S-C., and Lu, G-D. 2020. Numerical Investigation of Blast-Induced Rock Fragmentation. Computers and Geotechnics. 128: 103846.

Doi: http://dx.doi.org/10.1016/j.compgeo.2020.103846.

Zhang, Z-X., Hou, D-F., Guo, Z., He, Z., and Zhang, Q. 2020. Experimental Study of Surface Constraint Effect on Rock Fragmentation by Blasting. International Journal of Rock Mechanics and Mining Sciences. 128: 104278.

Doi: http://dx.doi.org/10.1016/j.ijrmms.2020.104278.

Zhang, Z-X., Qiao, Y., Chi, L. Y., and Hou, D-F. 2021. Experimental Study of Rock Fragmentation Under Different Stemming Conditions in Model Blasting. International Journal of Rock Mechanics and Mining Sciences. 143: 104797.

Doi: http://dx.doi.org/10.1016/j.ijrmms.2021.104797.

Balakrishnan, V., Pradhan, M., and Dhekne, P. Y. 2019. Investigating Rock Fragmentation in Distributed Spherical Air-Gap Blasting Technique. Powder Technology. 362: 101-110.

Doi: http://dx.doi.org/10.1016/j.powtec.2019.11.110.

Yan, P., Zhou, W., Lu, W., Chen, M., and Zhou, C. 2016. Simulation of Bench Blasting Considering Fragmentation Size Distribution. International Journal of Impact Engineering. 90: 132-145.

Doi: http://dx.doi.org/10.1016/j.ijimpeng.2015.11.015.

Navarro, J., Seidl, T., Hartlieb, P., Hartlieb, P., Sanchidrián, J. A., Segarra, P., Couceiro, P., Schimek, P., and Godoy, C. 2021. Blastability and Ore Grade Assessment from Drill Monitoring for Open Pit Applications. Rock Mechanics and Rock Engineering. 54: 3209-3228.

Doi: http://dx.doi.org/10.1007/s00603-020-02354-2.

Sanchidrián, J. A., and Ouchterlony, F. 2017. A Distribution-Free Description of Fragmentation by Blasting based on Dimensional Analysis. Rock Mechanics and Rock Engineering. 50: 781-806.

Doi: http://dx.doi.org/10.1007/s00603-016-1131-9.

Segarra, P., Sanchidrián, J. A., Navarro, J., and Castedo, R. 2018. The Fragmentation Energy-fan Model in Quarry Blasts. Rock Mechanics and Rock Engineering. 51: 2175-2190.

Doi: http://dx.doi.org/10.1007/s00603-018-1470-9.

Lawal, A. I. 2021. A New Modification to The Kuz-Ram Model Using the Fragment Size Predicted by Image Analysis. International Journal of Rock Mechanics and Mining Sciences. 138: 104595.

Doi: http://dx.doi.org/10.1016/j.ijrmms.2020.104595.

Morin, M. A., and Ficarazzo, F. 2006. Monte Carlo Simulation as a Tool to Predict Blasting Fragmentation Based on The Kuz–Ram Model. Computers & Geosciences. 32(3): 352-359.

Doi: http://dx.doi.org/10.1016/j.cageo.2005.06.022.

Faramarzi, F., Mansouri, H., and Farsangi, M. A. E. 2013. A Rock Engineering Systems based Model to Predict Rock Fragmentation by Blasting. International Journal of Rock Mechanics and Mining Sciences. 60: 82-94.

Doi: http://dx.doi.org/10.1016/j.ijrmms.2012.12.045.

Ebrahimi, E., Monjezi, M., Khalesi, M. R., and Armaghani, D. J. 2016. Prediction and Optimization of Back-Break and Rock Fragmentation using an Artificial Neural Network and a Bee Colony Algorithm. Bulletin of Engineering Geology and the Environment. 75: 27-36.

Doi: http://dx.doi.org/10.1007/s10064-015-0720-2.

Lilly, P. A. 1986. An Empirical Method of Assessing Rock Mass Blastability. Proceedings of the Large Open Pit Mining Conference. 89-92.

Kuznetsov, V. M. 1973. The Mean Diameter of the Fragments Formed by Blasting Rock. Soviet Mining Science. 9: 144-148.

Doi: http://dx.doi.org/10.1007/bf02506177.

Ouchterlony, F., and Sanchidrián, J. A. 2019. A Review of Development of Better Prediction Equations for Blast Fragmentation. Journal of Rock Mechanics and Geotechnical Engineering. 11(5): 1094-1109.

Doi: http://dx.doi.org/10.1016/j.jrmge.2019.03.001.

Supandi, Zakaria, Z., Sukiyah, E., and Sudradjat, A. 2018. The Correlation of Exposure Time and Claystone Properties at The Warukin Formation. International Journal of GEOMATE. 15(52): 160-167.

Doi: http://dx.doi.org/10.21660/2018.52.68175.

Supandi, Zakaria, Z., Sukiyah, E., and Sudradjat, A. 2020. New Constants of Fracture Angle on Quartz Sandstone. International Journal on Advanced Science, Engineering and Information Technology. 10(4): 1597-1603.

Doi: http://dx.doi.org/10.18517/ijaseit.10.4.8272.

Sujatono, S. 2022. Geological, Geomechanical and Geochemical Analysis on Claystone of the Sebamban Syncline. Geotechnical and Geological Engineering. 40: 2145-2155.

Doi: http://dx.doi.org/10.1007/s10706-021-02017-1.

Supandi, Zakaria, Z., Sukiyah, E., and Sudradjat, A. 2019. The Influence of Kaolinite-Illite Toward Mechanical Properties of Claystone. Open Geosciences. 11(1): 440-446.

Doi: http://dx.doi.org/10.1515/geo-2019-0035.

Sudjana. 2002. Desain dan Analisis Eksperimen. Bandung: Tarsito.

Downloads

Published

2024-06-02

Issue

Section

Science and Engineering

How to Cite

APPLICATION OF IMAGE DIGITAL PROCESSING TO EVALUATE ACCURACY IN PREDICTING ROCK FRAGMENTATION INDUCED BY BLASTING. (2024). Jurnal Teknologi (Sciences & Engineering), 86(4), 1-9. https://doi.org/10.11113/jurnalteknologi.v86.20743