A Potential of Versatile Rectangular Patch with Perturbation Slit Tunnel for Energy Harvesting Device

Authors

  • Mohd Khairul Hisham Ismail UTM-MIMOS COE for Telecommunication Technology
  • Mazlina Esa Department of Communication Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Noor Asniza Murad Department of Communication Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Fairus Mohd Yusoff UTM-MIMOS COE for Telecommunication Technology

DOI:

https://doi.org/10.11113/jt.v64.2076

Keywords:

Rectangular, perturbation slit, energy harvesting, metal-insulator-metal

Abstract

Nowadays, numerous devices to manipulate high frequencies for various applications are rapidly being investigated. Among them, nano-antennas for energy harvesting application at thermal radiation spectrum received most attention. A potential of versatile rectangular patch with perturbation slit tunnel that can collect electrical field energy is studied. The antenna performances are defined over field strength and current responses. The electrical field concentrated at the slit junction can be tuned by verifying the perturbation slit parameters. The electrical field amplitude of approximately 110 V/m is achieved with slit length of 1.0 µm. The field then can be guided out through the tunnel with some amplitude degradation in order to be integrated with metal-insulator-metal diode for energy conversion. The diode current obtained inside the insulator layer is compared with published results and it performs outstandingly. It was found that the proposed antenna exhibits promising performances that is suitable as an efficient energy harvesting device.

References

Stockman, M. I. 2004. Physical Review Letter. 93(137404: 1–4.

Gao, H., Li, K., Kong, F. M., Xie, H., and Zhao, J. 2010. Optimizing Nano-optical Antenna for the Enhancement of Spontaneous Emission. Progress in Electromagnetic Research. 104: 313–331.

Tanaka, H., Sugitani, Y., Kitagawa, J., Kadoya, Y., Blanchard, F., Hirori, H., Doi, A., Nagai, M. and Tanaka, K. 2010. Enhancement of THz Field in A Gap of Dipole Antenna. Proc. of 35th International Conferences on Infrared, Millimeter and Terahertz Wave (IRMMW-THz), Rome, Italy.

Zhang, W. and Martin, O. J. F. 2010. Optical Trapping and Sensing with Plasmonic Dipole Antennas. Proc. of SPIE. 7757: 775712–1.

Joshi, B. P. and Wei, Q. -H. 2008. Cavity Resonance of Metal-dieletric-metal Nanoantennas. Optics Express. 16(14): 10315–10322.

Ismail, M. K. H., Esa, M., Malik, N. N. N. A., Murad, N. A., Latiff, N. M. A., Arsat, R., Samsuri, N. A., Hamid, M. R. and Hamzah, S. A. 2012. A Study of Electrical Field Character for Rectangular Patch Antenna with Perturbation Slot at THz Range. Proc. of 2012 International Symposium on Antennas and Propagation (ISAP). Nagoya, Japan. 1–4.

Ismail, M. K. H., Esa, M., Malik, N. N. N. A. and Hamzah, S. A. 2011. Characterization of Rectangular Nano-patch Antenna using Transmission-Line Model. Proc. of 2011 International Symposium on Antennas and Propagation (ISAP 2011). Jeju Island, Korea. 1–4.

Ismail, M. K. H. and Esa, M. 2010. Preliminary Design of Rectangular Nano-Antenna at PHz. Proc. of 2010 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE 2010). IEEE Computer Society. 1–4.

Krishnan, S., La Rosa, H., Stefanokos, E., Bhansali, S. and Buckle, K. 2008. Design and Development of Batch Fabricatable Metal-insulator-metal Diode and Microstrip Slot Antenna as Rectenna Elements. Sensor Actuator A. 142(1): 40–47.

Hobbs, P. C. D., Laibowitz, R. B. and Libsch, F. R. 2005. Ni-NiO-Ni Tunnel Junctions for Terahertz and Infrared Detection. Applied Optical. 44(32): 6813–6822.

Fumeaux, C., Herrmann, W., Kneubuhland, F. K. and Rothizen, H. 1998. Nanometer thin-film Ni-NiO-Ni Diodes for Detection and Mixing of 30 THz Radiation. Infrared Physic and Technology. 39(3): 123–183.

Midrio, M., Romagnoli, M., Boscolo, S., De Angelis, C., Locatelli, A., Modotto, D. and Capobianco, A. -D. 2011. Flared Monopole Antennas for 10-µm Radiation. IEEE Journal of Quantum Electronics.47(1): 84–91.

Grover, S., Dmitriyeva, O., Estes, M. J. and Moddel, G. 2010. Travelling-wave Metal-insulator-metal Diodes for Improved Infrared Bandwidth and Efficiency of Structure-coupled Rectifiers. IEEE Transaction on Nanotechnology. 9: 716–722.

Kotter, D. K., Novack, S. D., Slafer, W. D. and Pinhero, P. J. 2010. Theory and Manufacturing Processes of Solar Nanostructure Electromagnetic Collector. Journal of Solar Energy Engineering. 132: 011014.

Li, D., Huang, Y., Shen ,Y. -C. and Khiabani, N. 2010. Effects of Substrate on the Performance of Photoconductive THz Structures. International Workshop on Antenna Technology.

Ung, B. and Sheng, Y. 2007. Interference of Surface Waves in aMetallic Nanoslit. Optic Express. 15: 1182–1190.

Downloads

Published

2013-09-15

Issue

Section

Science and Engineering

How to Cite

A Potential of Versatile Rectangular Patch with Perturbation Slit Tunnel for Energy Harvesting Device. (2013). Jurnal Teknologi (Sciences & Engineering), 64(3). https://doi.org/10.11113/jt.v64.2076