CMOS-MEMS Integration in Micro Fabry Perot Pressure Sensor Fabrication

Authors

  • Nor Hafizah Ngajikin Lightwave Communication Research Group, Fakulti Kejuruteraan Elektrik, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor
  • Low Yee Ling Lightwave Communication Research Group, Fakulti Kejuruteraan Elektrik, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor
  • Nur Izzati Ismail Lightwave Communication Research Group, Fakulti Kejuruteraan Elektrik, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor
  • Abu Sahmah Mohd Supaát Lightwave Communication Research Group, Fakulti Kejuruteraan Elektrik, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor
  • Mohd Haniff Ibrahim Lightwave Communication Research Group, Fakulti Kejuruteraan Elektrik, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor
  • Norazan Mohd Kassim Lightwave Communication Research Group, Fakulti Kejuruteraan Elektrik, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor

DOI:

https://doi.org/10.11113/jt.v64.2083

Keywords:

Fabry Perot pressure sensor, CMOS, MEMS, internal blood pressure

Abstract

Integration of Complimentary Metal-Oxide-Semiconductor (CMOS) and Microelectromechanical System (MEMS) technology in Fabry Perot blood pressure sensor (FPPS) fabrication processes is presented. The sensor that comprises of a 125 µm diameter of circular diaphragm is modeled to be fabricated using integration of CMOS-MEMS technology. To improve the sensor reliability, a sleeve structure is designed at the back of Silicon wafer by using MEMS Deep Reactive ion Etching (DRIE) process for fiber insertion, which offers a large bonding area. Optical light source at 550 nm wavelength is chosen for this device. The sensor diaphragm mechanic deflection and its optical spectrum is theoretically analyzed and simulated. The analytical results show high linear response in the range of 0 to 40 kPa and a reasonable sensitivity of 1.83 nm/kPa (spectrum shift/pressure) has been obtained for this sensor. The proposed integration of CMOS-MEMS technology limit the material selection yet produces an economical method of FPPS fabrication and integrated system.  

References

Dorf, R. C. 2006. The Electrical Engineering Handbook: Sensors, Nanoscience, Biomedical Engineering, and Instruments. CRC/Taylor & Francis.

Polanyi M. 1965. Medical applications of Fiber Optics. In Conference Medical Electronic Biology Engineering. Tokyo. 598–599.

Shimada, M. et al. 2009. Ultra-miniature Optical Fiber Pressure Sensor with a Sleeve for Catheter Insertion. Electronics and Communications in Japan. 92(8): 36–42.

Shimada, M., Y. Kinefuchi, and K. Takahashi. 2008. Sleeve-Type Ultra Miniature Optical Fiber Pressure Sensor Fabricated by DRIE. Sensors Journal IEEE. 8(7): 1337–1341.

Melamud, R., et al. 2007. SU-8 MEMS Fabry-Perot Pressure Sensor. Sensors and Actuators A. Physical. 138(1): 52–62.

Li, M., M. Wang, and H. Li. 2006. Optical MEMS Pressure Sensor Based on Fabry-Perot Interferometry. Opt. Express. 14(4): 1497–1504.

Xiao Q. N., et al. 2006. An Optical Fibre MEMS Pressure Sensor using Dual-Wavelength Interrogation. Institute of Physics (IOP) Publishing. Journal of Measurement and Science Technology. 17: 2401–2404.

Watson Stuart, G. M. J., and Jones. Julian D. C. 2006. Laser-machined Fibes as Fabry-Perot Pressure Sensors. Applied Optics. 45: 5590–5596.

Saran, A., D. C. Abeysinghe, and J. T. Boyd. 2006. Microelectromechanical System Pressure Sensor Integrated Onto Optical Fiber by Anodic Bonding. Appl. Opt. 45(8): 1737–1742.

Chen, F. U. et al. 2005. CMOS-MEMS Resonant RF Mixer-filters, Micro Electro Mechanical Systems. MEMS2005. 18th IEEE International Conference on 30 Jan.-3 Feb. 24–27

Cibula, E.a.D.D. 2005. Miniature Fiber-optic Pressure Sensor with a Polymer Diaphragm. Appl. Opt. 44(4): 2736–2744.

Tucker R. S., et al. 2002. Thermal Noise and Radiation Pressure in MEMs Fabry Perot Tunable Filters and Lasers. IEEE Journal on Selected Topics on Quantum Electronics. 8(1).

Hsu, T. R. 2008. Mems and Microsystems: Design, Manufacture, and Nanoscale Engineering. John Wiley. 550.

Ngajikin N. H. et al. 2011. MEMS Fabry Perot Optical Tuning Filter: Modeling an Electrostatic and Mechanic Beam Deflection. Microsystem Technologies. Springer. 17(1): 19–25.

Baltes, H. et al. 2008. CMOS-MEMS: Advanced Micro and Nanosystems. John Wiley & Sons.

Downloads

Published

2013-09-15

Issue

Section

Science and Engineering

How to Cite

CMOS-MEMS Integration in Micro Fabry Perot Pressure Sensor Fabrication. (2013). Jurnal Teknologi (Sciences & Engineering), 64(3). https://doi.org/10.11113/jt.v64.2083