DETECTION OF LOW VOLTAGE ARC SERIES FAULT AND ITS SEVERITY LEVEL USING FAST FOURIER TRANSFOR METHOD
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.20884Keywords:
Arc Detection, Fast Fourier Transform (FFT), Low Voltage, STM32, Nonlinear LoadAbstract
A short circuit is an electrical fault that occurs due to two conductors in contact, which causes the resistance to be minimal, resulting in a substantial electric current. There are cases of interference that cannot be avoided. This disorder is called the arc of fire series. If the arc of fire continues continuously, heat will arise, which can damage the equipment, and fire will occur. In this study, arc series detection will be carried out at low voltage against the influence of nonlinear loads on detection performance. The data retrieval method is divided into three conditions so the detection device can distinguish interference: normal conditions, switching, and arc fire. The three condition current reading is carried out by the current transformer and read by the arc detection device. The arc detection tool processes the signal obtained from the current transformer and converts the analog signal into a digital signal. Then, an analysis is carried out using the Fast Fourier Transform method. This tool consists of rectifiers, signal conditioners, an STM32 microcontroller, and a 16 x 2 LCD. The output of this final is to create an arc detection device that can detect 100% the presence of a series of arc faults in low-voltage equipment in normal and arc fire conditions.
References
R. Wiryatama. 2017. Analysis of Low Voltage Arc Flash Characteristic on Direct Short Circuit by Spark Thermal Imaging and Short Circuit Current Synchronization. J. Tek. ITS. In 2017 International Seminar on Intelligent Technology and Its Application (ISITIA). 165-168.
F. de S. Danilo, A. M. Walter, M. Edson, and R. S. Sergio. 2023. An Analysis of Accidents of Electrical Origin in Brazil Between 2016 and 2021. IEEE Trans. Ind. Appl. Doi: 10.1109/TIA.2023.3241138.
Y. S. Petrov, Y. P. Maskov, and Y. V. Sakhanskiy. 2017 Generalized Matrix Analysis Of Electric Firing Circuits. 2017 Int. Conf. Ind. Eng. Appl. Manuf. ICIEAM 2017 - Proc. 17–20. Doi: 10.1109/ICIEAM.2017.8076140.
A. Alabani, P. Ranjan, J. Jiang, L. Chen, I. Cotton, and V. Peesapati. 2023. Electrical Characterization and Modeling of High Frequency Arcs for Higher Voltage Aerospace Systems. IEEE Trans. Transp. Electrif. 1–10. Doi: 10.1109/TTE.2023.3244776.
S. A. Saleh, A. S. Aljankawey, R. Errouissi, and E. Castillo-Guerra. 2015. Extracting the Phase of Fault Currents: A New Approach for Identifying Arc Flash Faults. 2015 IEEE/IAS 51st Ind. Commer. Power Syst. Tech. Conf. I CPS 2015. 52(2): 1226-1240. Doi: 10.1109/ICPS.2015.7266437.
A. F. Ilman, M. Jauhari, Dzulkiflih, and M. Nur. 2020. Design of Fire Detection Equipment Due to the Arc-Fault Series on Low Voltage Networks Based on the Internet of Things (IoT). Proceeding - 2020 3rd Int. Conf. Vocat. Educ. Electr. Eng. Strength. Framew. Soc. 5.0 through Innov. Educ. Electr. Eng. Informatics Eng. ICVEE 2020. Doi: 10.1109/ICVEE50212.2020.9243206.
Koutoula, Sotiria, G. et al. 2015. Investigating Ways to Prevent Electrical Arch Flash. In 2015 Petroleum and Chemical Industry Conference Europe (PCIC Europe). IEEE. 1–8.
S. Chen, H. Wu, Y. Meng, Y. Wang, X. Li, and C. Zhang. 2023. Reliable Detection Method of Variable Arc series Fault in Building Integrated Photovoltaic Systems Based on Nonstationary Time Series Analysis. IEEE Sens. J. 23(8): 1–1. Doi: 10.1109/jsen.2023.3256009.
D. A. Asfani, D. Fahmi, I. Made Yulistya Negara, A. Brastama, F. F. Kurniawan, and I. F. Ramadhan. 2018. Web-based Online Monitoring of Low Voltage Arc seriesing with Line Impedance Analysis. Proceeding - 2018 Int. Semin. Intell. Technol. Its Appl. ISITIA 2018. 123–128. Doi: 10.1109/ISITIA.2018.8711302.
K. Zia, A. Papasani, D. Rosewater, and W. J. Lee. 2020. Determine the Electrode Configuration and Sensitivity of the Enclosure Dimensions When Performing Arc Flash Analysis. IEEE Trans. Ind. Appl. 56(6): 6307–6313. Doi: 10.1109/TIA.2020.3020531.
H. B. Land. 2008. Determination of the Cause of Arcing faults In Low-voltage Switchboards. IEEE Trans. Ind. Appl. 44(2): 430–436. Doi: 10.1109/TIA.2008.916595.
Neitzal, D. K. 2016. Electrical Safety Update-OSHA 29 CFR 1910.269 and NFPA 70E-2015 Revision. IEEE Transaction on Industry Applications. 52(4): 2753–2758.
Y. Wang, L. Hou, K. C. Paul, Y. Ban, C. Chen, and T. Zhao. 2022. Arcnet: Series AC Arc Fault Detection based on Raw Current and Convolutional Neural Network. IEEE Trans. Ind. Informatics. 18(1): 77–86. Doi: 10.1109/TII.2021.3069849.
J. Kim, S. Kwak, and S. Choi. 2021. DC Arc series Detection Algorithm Based on Adaptive Moving Average Technique. IEEE Access. 9: 94426–94437. Doi: 10.1109/ACCESS.2021.3093980.
J. Jiang et al. 2019. Arc Series Detection and Complex Load Recognition based on Principal Component Analysis and Support Vector Machine. IEEE Access. 7: 47221–47229. Doi: 10.1109/ACCESS.2019.2905358.
Park, Dae-won, et al. 2008. Detection Algorithm of Series Arch for Electrical Fire Prediction. In 2008 International Conference on Condition Monitoring and Diagnosis. IEEE. 716–719.
E. Karakose, M. T. Gencoglu, M. Karakose, O. Yaman, I. Aydin, and E. Akin. 2018. A New Arc Detection Method based on Fuzzy Logic using S-transform for Pantograph–catenary Systems. J. Intell. Manuf. 29(4): 839–856. Doi: 10.1007/s10845-015-1136-3.
K. R. Reddy, Y. V. Balarama Krishna Rao, M. Madepalli, U. Chandra Rao, S. Arumugam, and G. V. Appa Rao. 2021. Solution to Economic Load Dispatch using Ant Colony Search based-Teaching Learning Optimization. 2021 IEEE Int. Conf. Emerg. Trends Ind. 4.0, ETI 4.0 2021. 1–7. Doi: 10.1109/ETI4.051663.2021.9619256.
H. Guan, W. Q. Yao, J. Y. Liu, Z. Y. Hu, and W. R. Si. 2022. Ultra-wide band Detection of Pulse Current in DC Withstand Voltage PD Test, Part 2: Waveform transformation. Proc. - 2022 14th Int. Conf. Meas. Technol. Mechatronics Autom. ICMTMA 2022. 148–155. Doi: 10.1109/ICMTMA54903.2022.00036.
A. Haro, H. Young, and B. Pavez. 2021. Fuzzy Logic Active Yaw Control of a Low-Power Wind Generator. IEEE Lat. Am. Trans. 19(11): 1941–1948. Doi: 10.1109/TLA.2021.9475848.
C. J. Park, H. L. Dang, S. Kwak, and S. Choi. 2021. Deep Learning-based Series AC Arc Detection Algorithms. J. Power Electron. 21(10): 1621–1631. Doi: 10.1007/s43236-021-00299-5.
M. Armstrong, D. J. Atkinson, C. M. Johnson, and T. D. Abeyasekera. 2005. Low Order Harmonic Cancellation in a Grid Connected Multiple Inverter System via Current Control Parameter Randomization. IEEE Trans. Power Electron. 20(4): 885–892. Doi: 10.1109/TPEL.2005.850949.
S. Guo, J. Li, and Z. Ning. 2020. Graphical Representation of Fourier Series from Fourier Transformation. Proc. 2020 IEEE Int. Conf. Artif. Intell. Comput. Appl. ICAICA 2020. 4: 621–624. Doi: 10.1109/ICAICA50127.2020.9182503.
S. Oraintara. 2002. The Unified Discrete Fourier-Hartley Transforms Theory and Structure. Proc. - IEEE Int. Symp. Circuits Syst. 3: 433–436. Doi: 10.1109/iscas.2002.1010253.
P. Olga and P. Alexey. 2020. Determining the Envelope of Real Finite Discrete Signal via Parametric Discrete Fourier Transform. 2020 Int. Conf. Dyn. Vibroacoustics Mach. DVM 2020. Doi: 10.1109/DVM49764.2020.9243923.
X. Lu, S. Chen, S. Zhang, H. Zhao, and L. Zhu. 2021. FPGA based Implementation of All-phase FFT Phase Difference Frequency Measurement. 2021 6th Int. Conf. Signal Image Process. ICSIP 2021. 635–639. Doi: 10.1109/ICSIP52628.2021.9688632.
D. Karlsson and D. J. Hill. 1994. Modeling and Identification of Nonlinear Dynamic Loads in Power Systems. IEEE Trans. Power Syst. 9(1): 157–166. Doi: 10.1109/59.317546.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.