• Nor Hafeeda Rosdan ᵃFaculty of Health Sciences, UiTM Cawangan Pulau Pinang, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia ᵇAdvanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
  • Zainoodin Sheik Abdul Kader Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
  • Nor Hazwani Ahmad Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia



Invasive meningococcal disease, whole cell protein, surface depleted, whole cell protein, cell surface protein, differential extraction


Invasive meningococcal disease (IMD) is an acute, severe, and potentially fatal infection caused by Neisseria meningitidis and is a global public health burden. Given the high fatality rate linked to acute bacterial meningitis, it is imperative to initiate treatment and diagnosis concurrently in most cases. While a culture demonstrating the growth of N. meningitidis from blood or cerebrospinal fluid (CSF) remains the gold standard, however, its sensitivity diminishes following antibiotic administration. Therefore, in this study, differentially extracted whole cell protein (WCP), surface depleted whole cell protein (sdWCP), and cell surface protein (CSP) profiles were analysed by using SDS-PAGE to characterise and classify pathogenic N. meningitidis and non-pathogenic species. This study provides clear evidence that SDS-PAGE yields distinct protein patterns across Men A, B, C, and Y, clinical isolates 1 and 2, N. sicca, N. cinerea, and M. catarrhalis. It effectively demonstrates that SDS-PAGE protein profiling can serve as a reliable method for characterising and separating bacterial proteins at both the species and strain levels. Despite the availability of more advanced technologies, SDS-PAGE remains a valuable tool, particularly in settings where advanced equipment and knowledgeable personnel are lacking. Our approach employs various extraction techniques, has successfully defined and characterised N. meningitidis, non-pathogenic Neisseria species, and M. catarrhalis.


S. Bosis, A. Mayer, and S. Esposito. 2015. Meningococcal Disease in Childhood: Epidemiology, Clinical Features and Prevention. J. Prev. Med. Hyg. 56(3): E121-E124.

U. Thisyakorn et al. 2022. Invasive Meningococcal Disease in Malaysia, Philippines, Thailand, and Vietnam: An Asia-Pacific Expert Group Perspective on Current Epidemiology and Vaccination Policies. Hum. Vaccines Immunother. Doi: 10.1080/21645515.2022.2110759.

P. A. Campsall, K. B. Laupland, and D. J. Niven. 2013. Severe Meningococcal Infection. A Review of Epidemiology, Diagnosis, and Management. Crit. Care Clin. 29(3): 393-409. Doi: 10.1016/j.ccc.2013.03.001.

V. L. Strelow and J. E. Vidal. 2013. Invasive Meningococcal Disease. Arq. Neuropsiquiatr. 71(9B): 653-658. Doi: 10.1590/0004-282X20130144.

R. B. Dorey, A. A. Theodosiou, R. C. Read, C. E. Jones, and J. C. D. R. T. A. Read, R. C. 2019. The Nonpathogenic Commensal Neisseria: Friends and Foes in Infectious Disease. Curr. Opin. Infect. Dis. 32(5): 490-496. Doi: 10.1097/QCO.0000000000000585.

W. J. Kim et al. 2019. Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-dependent mechanism. Cell Host Microbe. 26(2): 228-239.e8. Doi: 10.1016/j.chom.2019.07.003.

M. V. Humbert and M. Christodoulides. 2020. Atypical, yet not Infrequent, Infections with Neisseria Species. Pathogens. 9(1). Doi: 10.3390/pathogens9010010.

T. W. Bourke, D. J. Fairley, and M. D. Shields. 2010. Rapid Diagnosis of Meningococcal Disease. Expert Rev. Anti. Infect. Ther. 8(12): 1321-1323. Doi: 10.1586/eri.10.132.

M. C. Brouwer, G. E. Thwaites, A. R. Tunkel, and D. Van De Beek. 2012. Dilemmas in the Diagnosis of Acute Community-acquired Bacterial Meningitis. Lancet. 380(9854): 1684-1692. Doi: 10.1016/S0140-6736(12)61185-4.

V. Manchanda, S. Gupta, and P. Bhalla. 2006. Meningococcal Disease: History, Epidemiology, Pathogenesis, Clinical Manifestations, Diagnosis, Antimicrobial Susceptibility and Prevention. Indian J. Med. Microbiol. 24(1): 7-19. Doi: 10.4103/0255-0857.19888.

N. Singhal, A. K. Maurya, and J. S. Virdi. 2019. Bacterial Whole Cell Protein Profiling: Methodology, Applications and Constraints. Curr. Proteomics. 16(2): 102-109. Doi: 10.2174/1570164615666180905102253.

I. Kustos, B. Kocsis, I. Kerepesi, and F. Kilár. 1998. Protein Profile Characterization of Bacterial Lysates by Capillary Electrophoresis. Electrophoresis. 19(13): 2317-2323. Doi: 10.1002/elps.1150191311.

K. Abdul Lateef Khan and Z. Sheik Abdul Kader. 2023. Comparative Protein Profile Analysis of Differentially Extracted Whole Cell Bacterial Protein Derived from Salmonella Typhi and Invasive Non-typhoidal Salmonella. J. Teknol. 85(4): 189-197. Doi: 10.11113/jurnalteknologi.v85.19827.

A. Arzese, G. A. Botta, G. P. Gesu, and G. Schito. 1988. Evaluation of a Computer-assisted Method of Analysing SDS—PAGE Protein Profiles in Tracing a Hospital Outbreak of Serratia Marcescens. J. Infect. 17(1): 35-42. Doi: 10.1016/S0163-4453(88)92284-0.

J. Nicolet, P. Paroz, and M. Krawinkler. 1980. Polyacrylamide Gel Electrophoresis of Whole-cell Proteins of Porcine Strains of Haemophilus. Int. J. Syst. Bacteriol. 30(1): 69-76. Doi: 10.1099/00207713-30-1-69.

P. Vandamme, B. Pot, M. Gillis, P. De Vos, K. Kersters, and J. Swings. 1996. Polyphasic Taxonomy, a Consensus Approach to Bacterial Systematics. Microbiol. Rev. 60(2): 407-438. Doi: 10.1128/mmbr.60.2.407-438.1996.

O. Dos Santos, M. C. C. de Resende, A. L. de Mello, A. P. G. Frazzon, and P. A. D’Azevedo. 2012. The Use of Whole-cell Protein Profile Analysis by SDS-PAGE as an Accurate Tool to Identify Species and Subspecies of Coagulase-negative Staphylococci. Apmis. 120(1): 39-46. Doi: 10.1111/j.1600-0463.2011.02809.x.

T. J. Biol. 2000. Availibility of Use of Total Extracellular Proteins in SDS-PAGE for Characterization of Gram-positive Cocci. Turkish J. Biol. 24(4): 817-824.

H. Körkoca and B. Boynukara. 2003. The Characterization of Protein Profiles of the Aeromonas Hydrophila and a. Caviae Strains Isolated from Gull and Rainbow Trout Feces by SDS-PAGE. Turkish J. Vet. Anim. Sci. 27(5): 1173-1177.

A. Horvath and H. Riezman. 1994. Rapid Protein Extraction from Saccharomyces Cerevisiae. Yeast. 10(10). 1305-1310. Doi: 10.1002/yea.320101007.

Z. Sheik Abdul Kader. 2006. The Role of the Cell Surface Proteins of Burkholderia Pseudomallei in the Serodiagnosis of Melioidosis and Comparative Serological Proteomic Analysis of the Humoral Immune Response in Melioi. Universiti Sains Malaysia.

U. K. Laemmli. 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 227: 680-685.

S. Garcia-Vallve, A. Romeu, and J. Palau. 2000. Horizontal Gene Transfer in Bacterial and Archaeal Complete Genomes. Genome Res. 10(11): 1719-1725. Doi: 10.1101/gr.130000.

M. Mahendrakumar and M. Asrar Sheriff. 2015. Whole Cell Protein Profiling of Human Pathogenic Bacteria Isolated from Clinical Samples. Asian J. Sci. Res. 8(3): 374-380. Doi: 10.3923/ajsr.2015.374.380.

H. McKenzie, M. G. Morgan, J. Z. Jordens, M. C. Enright, and M. Bain. 1992. Characterisation of Hospital Isolates of Moraxella (Branhamella) catarrhalis by SDS-PAGE of Whole-cell proteins, Immunoblotting and Restriction-Endonuclease Analysis. J. Med. Microbiol. 37(1): 70-76. doi: 10.1099/00222615-37-1-70.

L. F. Mocca and C. E. Frasch. 1982. Sodium Dodecyl Sulfate-Polyacrylamide Gel Typing System for Characterization of Neisseria Meningitidis Isolates. J. Clin. Microbiol. 16(2): 240-244. Doi: 10.1128/jcm.16.2.240-244.1982.

J. S. Knapp, P. A. Totten, M. H. Mulks, and B. H. Minshew. 1984. Characterization of Neisseria Cinerea, a Nonpathogenic Species Isolated on Martin-Lewis Medium Selective for Pathogenic Neisseria spp. J. Clin. Microbiol. 19(1): 63-67. Doi: 10.1128/jcm.19.1.63-67.1984.

J. Derrick, J. E. Heckels, and M. Virji. 2006. Major Outer Membrane Proteins of Meningococci. Wiley-VCH Verlag.

C. E. Frasch, W. D. Zollinger, and J. T. Poolman. 1985. Serotype Antigens of Neisseria Meningitidis and a Proposed Scbemefor Designation of Serotypes. Rev. Infect. Dis. 7(4): 504-510. Doi: 10.1093/clinids/7.4.504.

Y. Masforrol et al. 2017. A Deeper Mining on the Protein Composition of VA-MENGOC-BC®: An OMV-based Vaccine against N. Meningitidis Serogroup B and C. Hum. Vaccines Immunother. 13(11): 2548-2560. Doi: 10.1080/21645515.2017.1356961.

K. J. Towner and A. Cockayne. 1993. Molecular Methods for Microbial Identification and Typing. Springer.

D. A. Caugant, L. F. Mocca, C. E. Frasch, L. O. Frøholm, W. D. Zollinger, and R. K. Selander. 1987. Genetic Structure of Neisseria Meningitidis Populations in Relation to Serogroup, Serotype, and Outer Membrane Protein Pattern. J. Bacteriol. 169(6): 2781-2792. Doi: 10.1128/jb.169.6.2781-2792.1987.

I. Berber, C. Cokmus, and E. Atalan. 2003. Characterization of Staphylococcus Species by SDS-PAGE of Whole-cell and Extracellular Proteins. Microbiology. 72(1): 42-47. Doi: 10.1023/A:1022221905449.

D. Robertson, G. P. Mitchell, J. S. Gilroy, C. Gerrish, G. P. Bolwell, and A. R. Slabas. 1997. Differential Extraction and Protein Sequencing Reveals Major Differences in Patterns of Primary Cell Wall Proteins from Plants. J. Biol. Chem. 272(25): 15841-15848. Doi: 10.1074/jbc.272.25.15841.

N. Du Rand and M. D Laing. 2011. Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) of Crude Extracted Insecticidal Crystal Proteins of Bacillus Thuringiensis and Brevibacillus Laterosporus. African J. Biotechnol. 10(66): 15094-15099. Doi: 10.5897/AJB11.026.

M. Y. Rohani et al. (2007). Serogroups and Antibiotic Susceptibility Patterns of Neisseria Meningitidis Isolated from Army Recruits in a Training Camp. Malays. J. Pathol., 29(2): 91-94.






Science and Engineering

How to Cite