A THERMAL BEHAVIOUR STUDY OF NATURAL FIBER-REINFORCED POLYMER COMPOSITE/HONEYCOMB CORE SANDWICH PANELS

Authors

  • Muhammad Zulkarnain Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka (UTeM), 75450 Ayer Keroh, Melaka, Malaysia
  • Lubis, M. Sobron Y Department of Mechanical Engineering, Tarumanagara University, Jakarta, Indonesia
  • Mohamad Irfan Insdrawaty Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka (UTeM), 75450 Ayer Keroh, Melaka, Malaysia
  • Mohamad Izmul Farees Azman Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka (UTeM), 75450 Ayer Keroh, Melaka, Malaysia
  • Muhamad Izwan Aiman Azmi Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka (UTeM), 75450 Ayer Keroh, Melaka, Malaysia
  • Mohd Faez Zainol Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka (UTeM), 75450 Ayer Keroh, Melaka, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20975

Keywords:

Honeycomb, sheet plate, composite, fiber distribution, morphology

Abstract

The unique honeycomb structure has provided good modulus with a lightweight material, especially in aerospace and vehicle applications.  Realizing that the thermal analysis of natural fiber honeycomb sandwiches was still lacking in observation, the research needs to investigate thermal transfer characteristics to promote engineering demand. The objective of this research was to investigate honeycomb sandwiches' thermal behaviour by implementing local natural fibers of coconut, oil palm, and sugar cane for sheet plate structure through experimental and numerical analysis. The natural fiber was varied by weight content with the ratio of composite given in a range of 0%wt. - 8%wt.  The results have demonstrated that the face sheet plate was paramount part to absorb thermal flow. The study displayed the low thermal conductivity of the face sheet will counter significantly the heat transfer of the honeycomb structure. The experimental investigation found that the coconut fiber successfully performs as an insulator in a honeycomb sandwich which reached 6.78 W.m-1K-1 of thermal conductivity which was an 85.86% improvement as an insulator. While palm oil and sugar cane presented at 11.12 W.m-1K-1 and 10.59 W.m-1K-1, it was slightly higher compared to the coconut. In the numerical investigation, fiber distribution development was successfully performed in a honeycomb sandwich sheet plate composite. The thermal conductivity showed a difference from the experimental, where the higher thermal resistance was shown by palm oil and sugar cane at 8.22 W.m-1K-1 and 8.16 W.m-1K-1, respectively. 

References

Indrusiak, T., Soares, B. G., Pereira, I. M., Pontes, K., Pereira, E. C. L., Moura, L. C. R., Migliano, A. C. C. 2023. Low Cost and Easily Scalable Microwave Absorbing Material based on Three-layer Honeycomb Sandwich Structures. Materials Today Communications. 35. Doi: 10.1016/j.mtcomm.2023.105955.

Pan, J., Fang, H., Xu, M. C., Xue, X. Z. 2020. Dynamic Performance of a Sandwich Structure with Honeycomb Composite Core for Bridge Pier Protection from Vehicle Impact. Thin-Walled Structures. 157. Doi: 10.1016/j.tws.2020.107010.

Ni, Z., Li, D., Ji, L., Zhou, K. 2022. Aeroelastic Modeling and Analysis of Honeycomb Plates in High-speed Airflow with Acoustic Load and General Boundary Conditions. Composite Structures. 305. Doi: 10.1016/j.compstruct.2022.116504.

Zhao, W., Liu, Z., Yu, G., Wu, L. 2021. A New Multifunctional Carbon Fiber Honeycomb Sandwich Structure with Excellent Mechanical and Thermal Performances. Composite Structures. 274. Doi: 10.1016/j.compstruct.2021.114306.

Hana, M., Wang, H. 2021. Computational Microstructure Modeling of Transverse Thermal Behavior in Cementitious Composites Filled with Randomly Dispersed Natural Fibers Coated by Functionally Graded Interphase. International Journal of Heat and Mass Transfer. 180. Doi: 10.1016/j.ijheatmasstransfer.2021.121772.

Venkatesan, K. R., Stoumbos, T. Inoyama, D., A. Chattopadhyay. 2021. Computational Analysis of Failure Mechanisms in Composite Sandwich Space Structures Subject to Cyclic Thermal Loading. Composite Structures. 256. Doi: 10.1016/j.compstruct.2020.113086.

Zhuang, C., Tao, R., Liu, X., Zhang, L., Cui, Y., Liu, Y., Zhang, Z. 2021. Enhanced Thermal Conductivity and Mechanical Properties Oof Natural Rubber-based Composites Co-incorporated with Surface Treated Alumina and Reduced Graphene Oxide. Diamond & Related Materials. 116. Doi: 10.1016/j.diamond.2021.108438.

Xie, X., Yang, D. 2023. Construction of Thermal Conduction Networks and Decrease of Interfacial Thermal Resistance for Improving Thermal Conductivity of Epoxy Natural Rubber Composites. Ceramics International. 49. Doi: 10.1016/j.mtcomm.2023.105955.

Duan, X., Cheng, S., Li, Z., Liang, C., Zhang, Z., Zhao, G., Liu, Y., An, D., Sun, Z., Chingping Wong. 2022. Flexible and Environmentally Friendly Graphene Natural Rubber Composites with High Thermal Conductivity for Thermal Management. Composites Part A. 163. Doi: 10.1016/j.compositesa.2022.107223.

Somdee, P., Ansari, M. A., Szabo, T., Marossy, K. 2023. Improved Thermal Conductivity of Polyurethane (PU)-/SiC Composite Fabricated via Solution Casting Method and Its Mechanical Model for Prediction and Comparison. Heliyon. 9. Doi: 10.1016/j.heliyon.2023.e15571.

Muthukumar, K., Sabariraj, R.V., Kumar, S. D., Sathish, T. 2020. Investigation of Thermal Conductivity and Thermal Resistance Analysis on Different Combination of Natural Fiber Composites of Banana, Pineapple and Jute. Materials Today: Proceedings. 21: 976-980.

Saravanan, K. A., Prasad, A. R., Muruganandam, D., Saravanan, G., Vivekanandan, S., Sudhakar, M. 2021. Study on Natural Fiber Composites of Jute, Pine Apple and Banana Compositions Percentage of Weight Basis for Thermal Resistance and Thermal Conductivity. Materials Today: Proceedings. 37: 147-151.

Liu, K., Takagi, H., Osugi, R., Yang, Z. 2012. Effect of Physicochemical Structure of Natural Fiber on Transverse Thermal Conductivity of Unidirectional Abaca/bamboo Fiber Composites. Composites: Part A. 43: 1234-1241.

Ahmad, M. Z., Ishak, M. R., Taha, M. M., Mustapha, F., Leman, Z., Irianto. 2023. Mechanical, Thermal and Physical Characteristics of Oil Palm (Elaeis Guineensis) Fiber Reinforced Thermoplastic Composites for FDM – Type 3D Printer. Polymer Testing. 120. Doi: 10.1016/j.polymertesting.2023.107972.

Sari, N. H., Suteja, S., Fudholi, A., Zamzuriadi, A., Sulistyowati, E. D., Pandiatmi, P., Sinarep, S., Zainuri, A. 2021. Morphology and Mechanical Properties of Coconut Shell Powder-filled Untreated Cornhusk Fibre-unsaturated Polyester Composites. Polymer. 222. Doi: 10.1016/j.polymer.2021.123657.

Ramlee, N. A., Jawaid, M., Yamani, S. A. K., Zainudin, E. S., Alamery, S. 2021. Effect of Surface Treatment on Mechanical, Physical and Morphological Properties of Oil Palm/bagasse Fiber Reinforced Phenolic Hybrid Composites for Wall Thermal Insulation Application. Construction and Building Materials. 276. Doi: 10.1016/j.conbuildmat.2020.122239.

Ishak, M. R., Yidris, N., Zuhri, M. Y. M., Asyraf, M. R. M. and Zakaria, S. Z. S. 2023. Another Researcher has Implemented the Natural Fiber Composite as Skin in a Honeycomb Sandwich to Investigate the Influence of Woven Glass-fiber Prepreg Orientation on Flexural Performance. Journal of Material MDPI. Doi: 10.3390/ma16145021.

Zhao, X., Tu, W., Chen, Q., Wang, G. 2021. Progressive Modeling of Transverse Thermal Conductivity of Unidirectional Natural Fiber Composites. International Journal of Thermal Sciences. 162. Doi: 10.1016/j.ijthermalsci.2020.106782.

Pawlak, S., Tokarski, M., Ryfa, A., Orlande, H. R. B., Adamczyk, W. 2022. Measurement of the Anisotropic Thermal Conductivity of Carbon-fiber/epoxy Composites based on Laser-induced Temperature Field: Experimental Investigation and Numerical Analysis. International Communications in Heat and Mass Transfer. 139. Doi: 10.1016/j.icheatmasstransfer.2022.106401.

Carvil, J. 1994. Mechanical Engineer's Data Handbook.

Ramirez R. A., Castillo, F. C., Dominguez, V. J. M., Guzman, M. O. 2012. Thermal Conductivity of Coconut Fibre Filled Ferrocement Sandwich Panels. Construction and Building Materials. 37: 425-431.

Mawardi, I., Aprilia, S., Faisal, M., Rizal, S. 2022. Investigation of Thermal Conductivity and Physical Properties of Oil Palm Trunks/ramie Fiber Reinforced Biopolymer Hybrid Composites as Building Bio-insulation. Materials Today: Proceedings. 60. Doi: 10.1016/j.matpr.2022.01.249.

Potiron, C. O., Bilba, K., Zaknoune, A., Ars`ene, M. A. 2021. Auto-coherent Homogenization Applied to the Assessment of Thermal Conductivity: Case of Sugar Cane Bagasse Fibers and Moisture Content Effect. Journal of Building Engineering. 33. Doi: 10.1016/j.jobe.2020.101537.

Hermama, C., Bensiali, B., Lahbabi, S., Maliki, A. E. 2023. Computational Thermal Conductivity in Polyurethane Mixed Cell Foam: Numerical Boundary Effects and Hybrid Model. Materials Science for Energy Technologies. Doi: 10.1016/j.mset.2023.03.004.

Downloads

Published

2024-03-27

Issue

Section

Science and Engineering

How to Cite

A THERMAL BEHAVIOUR STUDY OF NATURAL FIBER-REINFORCED POLYMER COMPOSITE/HONEYCOMB CORE SANDWICH PANELS. (2024). Jurnal Teknologi, 86(3), 33-41. https://doi.org/10.11113/jurnalteknologi.v86.20975