PEMBANGUNAN PENYIMPANAN TENAGA HIJAU DARIPADA SELULOSA BAKTERIA, SELULOSA METIL DAN KANJI KENTANG
DEVELOPMENT OF GREEN ENERGY STORAGE FROM BACTERIAL CELLULOSE, METHYL CELLULOSE AND POTATO STARCH
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.20987Keywords:
Bacterial Cellulose; green technology; supercapacitor; polymer electrolyte; electrochemical double-layer capacitorAbstract
A natural polymer known as bacterial cellulose (BC), derived from a symbiotic culture of bacteria and yeast (SCOBY), is utilized as the electrodes for the electrochemical double-layer capacitors (EDLC). Bacterial cellulose which can be easily obtained from the local market, possesses an exceptional structure that allows for the elimination of non-biodegradable binders and the use of current collectors in the EDLC electrodes. A green polymer electrolyte system consisting of methylcellulose, potato starch and lithium bromide. This electrolyte demonstrates a conductivity of (1.38 ± 0.54) × 10-4 S/cm, electrochemical stability of 1.3 V, and an ionic transference number of 0.98. The optimized electrolyte is used in the EDLC. Cyclic voltammetry analysis reveals that he fabricated EDLC has a capacitive behavior without any peaks indicating redox reactions. The EDLC undergo charging and discharging for up to 5000 cycles, with specific capacitances of 26 F/g. The EDLC shows a maximum power density of 1730 W/kg, with energy density of 3.6 Wh/kg.
References
Badi, N., Theodore, A. M., Alghamdi, S. A., Al-Aoh, H. A., Lakhouit, A. and Singh, P. K. 2022. The Impact of Polymer Electrolyte Properties on Lithium-ion Batteries. Polymers. 14(15): 3101.
Wang, G., Wu, J., Zheng, Z., Niu, L., Pan, L. and Wang, B. 2022. Effect of Deformation on Safety and Capacity of Li-ion Batteries. Batteries. 8(11): 235.
Sirimanne, D. C. U., Kularatna, N. and Arawwawala, N. 2023. Electrical Performance of Current Commercial Supercapacitors and Their Future Applications. Electronics. 12(11): 2465.
Tshiani, Tumba, C. and Umenne, P. 2022. The Impact of the Electric Double-layer Capacitor (EDLC) in Reducing Stress and Improving Battery Lifespan in a Hybrid Energy Storage System (HESS) System. Energies. 15(22): 8680.
Adam, A. A., Soleimani, H., Dennis, J. O., Aldaghri, O. A., Alsadig, A., Ibnaouf, K.H., Abubakar Abdulkadir, B., et al. 2023. Insight into the Effect of Glycerol on Dielectric Relaxation and Transport Properties of Potassium-Ion-Conducting Solid Biopolymer Electrolytes for Application in Solid-State Electrochemical Double-layer Capacitor. Molecules. 28(8): 3461.
Alsulaim, G. M., Elamin and Ayman. A. 2023. Two Promising Methodologies for Dealing with Dealing with Changes in Optical and Electrical Properties of Polymer Electrolytes (SPEs). Journal of Composites Science. 7(6): 221.
Xie, X., Li, X., Xu, J. and Dong, L. 2023. Investigation and Improvement of Test Methods for Capacitance and DCESR of EDLC Cells. Sensors. 23(10): 4717.
Landi, G., La Notte, L., Palma, A. L. and Puglisi, G. 2022. Electrochemical Performance of Biopolymer-based Hydrogel Electrolyte for Supercapacitors with Eco-friendly Binders. Polymers. 14(20): 4445.
Kamal, T., Ul-Islam, M., Fatima, A., Ullah, M. W. and Manan, S. 2022. Cost-effective Synthesis of Bacterial Cellulose and Its Applications in the Food and Environmental Sectors. Gels. 8(9): 552.
de Souza, T. C., Amorim, J. D. P. de, Silva Junior, C. J. G. da, de Medeiros, et al. 2023. Magnetic Bacterial Cellulose Biopolymers: Production and Potential Applications in the Electronics Sector. Polymers. 15(4): 853.
Hamsan, M. H., Shukur, M. F. and Kadir, M. F. Z. 2017. The Effect of NH4NO3 Towards the Conductivity Enhancement and Electrical Behavior in Methyl Cellulose-starch Blend based Ionic Conductors. Ionics. 23: 1137-1154.
Jordá-Reolid, M., Ibáñez-García, A. Catani, L., and Martínez-García, A. 2022. Development of Blends to Improve Flexibility of Biodegradable Polymers. Polymers. 14(23): 5223.
Song, Z., Chen, F., Martinez-Ibañez, M. et al. 2023. A Reflection on Polymer Electrolytes for Solid-state Lithium Metal Batteries. Nature Communication. 14: 4884.
Fuzlin, A. F. A., Sahraoui, B., Samsudin, A. S. 2020. Influence of Lithium Bromide on Electrical Properties in Bio-based Polymer Electrolytes. Makara Journal of Technology. 24: 106.
Dipu Ahmed, Md. and Madina Maraz, K. 2023. Polymer Electrolyte Design Strategies for High-performance and Safe Lithium-ion Batteries: Recent Developments and Future Prospects. Materials Engineering Research. 5(1): 245.
Nolly, C., Ikpo., C. O., Ndipingwi, M. N., Ekwere, P. and Iwuoha, E. I. 2022. Pseudocapacitive Effects of Multi-walled Carbon Nanotubes-functionalised Spinel Copper Manganese Oxide. Nanomaterials. 12(19): 3514.
Xue, X., Wan, L., Li, W., Tan, X., Du, X. and Tong, Y. 2023. A Self-healing Gel Polymer Electrolyte, based on a Macromolecule Cross-linked Chitosan for Flexible Supercapacitors. Gels. 9: 8.
Wu, J. T., Xia, G. J., Li, S. B., Wang, L. P. and Ma, J. 2020. Flexible and Self−healable Gelled Polymer Electrolyte based on a Dynamically Cross−linked PVA Ionogel for High−performance Supercapacitors. Industrial & Engineering Chemistry Research. 59: 22509.
Shujahadeen B. Aziz, Abdulwahid, R. T., Sadiq, N. M., Abdullah, R. M., Tahir, D. A., Jameel, D. A., et al. 2023. Design of Biodegradable Polymer Blend Electrolytes with Decoupled Ion Motion for EDLC Device Application: Electrical and Electrochemical Properties. Results in Physics. 51: 106692.
Sera, J. P., Salado, M., Correia, D. M., Goncalves, R., Campo, F. J., Mendez, S. et al. 2023. High-performance Sustainable Electrochromic Devices based on Carrageenan Solid Polymer Electrolytes with Ionic Liquid. ACS Applied Engineering Materials. 1(5): 1416.
Rani, J. R., Das, N. C., Kim, M., Thangavel, R., Kim, S. T., Lee, Y. S. et al. 2023. Realizing High Energy Density Supercapacitors Assisted by Light-induced Charging. Journal of Power Sources. 576: 233197.
Arof, A. K., Kufian, M. Z., Syukur, M. F., Aziz, M. F., Abdelrahman, A. E. and Majid, S. R. 2012. Electrical Double Layer Capacitor using Poly(methyl methacrylate)–C4BO8Li Gel Polymer Electrolyte and Carbonaceous Material from Shells of Mata Kucing (Dimocarpuslongan) Fruit. Electrochimica Acta. 74: 39.
Aziz, S. B., Abdulwahid, R. T., Sadiq N. M., Abdullah, R. M., Tahir, D. A., Jameel, D. A., et al. 2023. Design of Biodegradable Polymer Blend Electrolytes with Decoupled Ion Motion for EDLC Device Application: Electrical and Electrochemical Properties. Results in Physics. 51:106692.
Markoulidis, F., Dawe, A., and Lekakou, C. 2021. Electrochemical Double-layer Capacitors with Lithium-ion Electrolyte and Electrode Coatings with PEDOT:PSS Binder. Journal of Applied Electrochemistry. 51: 373-385.
Zhang, Z., Lu, S., Li, Y., Song, J., Han, E., Wang, H. and He, Y. 2023. Promoting Hierarchical Porous Carbon Derived from Bamboo via Copper Doping for High-performance Supercapacitors. Industrial Crops and Products. 203: 117155.
Qin, G., Wang, M., Fan, L., Fang, X., Zhang, D., Liu, J. et al. 2020. Multifunctional Supramolecular Gel Polymer Electrolyte for Self-healable and Cold-resistant supercapacitor. Journal of Power Sources. 474: 228602.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.