THE EFFECT OF RIVET GUN OPERATING PRESSURE AND HOLE CLEARANCE ON RIVET SHEAR STRENGTH IN SHEET METAL RIVETING PROCESS

-

Authors

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20999

Keywords:

Rivet gun pressure, hole clearance, shear strength, rivets, sheet metal

Abstract

Several parameters related to the riveting process and the quality or result of the rivets are squeeze force, rivet length, rivet diameter, and hole clearance. This riveting experiment uses a semi-automatic riveting tool to set riveting parameters. The parameter set is the operating pressure of the rivet gun with a semi-automatic riveting tool, while the drilling process on sheet metal makes the hole clearance. The results of riveting using an automatic rivet tool show that the operating pressure of the rivet gun and the hole clearance have a direct effect on the shear strength of the rivets; the higher the operating pressure of the rivet gun and the greater the hole clearance will increase the shear strength of the rivets. This rise in the rivet’s shear strength is because, during the riveting process, the rivets experience strain hardening when pounded using a rivet gun.

References

M. P. Szolwinski and T. N. Farris. 2000. Linking Riveting Process Parameters to the Fatigue Performance of Riveted Aircraft Structures. Journal of Aircraft. 37(1): 130-37.

Doi: https://doi.org/10.2514/2.2572.

S. Gao and L. Budde. 1994. Mechanism of Mechanical Press Joining. International Journal of Machine Tools and Manufacture. 34(5): 641-57.

Doi: https://doi.org/10.1016/0890-6955(94)90049-3.

Cheraghi, S. Hossein. 2008. Effect of Variations in the Riveting Process on the Quality of Riveted Joints. International Journal of Advanced Manufacturing Technology. 39(11-12): 1144-55.

Doi: https://doi.org/10.1007/s00170-007-1291-6.

P. S. Shankar and L. Suresh Kumar. 2014. Stress Analysis of Single Lap Riveted Joint for Leak Proof Applications by Adhesive Bonding Using Finite Element Method. International Journal of Advanced Mechanical Engineering.

http://www.ripublication.com/ijame.htm.

J. Mucha, L. Kaščák and E. Spišák. 2013. The Experimental Analysis of Forming and Strength of Clinch Riveting Sheet Metal Joint Made of Different Materials. Advances in Mechanical Engineering. 2013(Cl).

Doi: https://doi.org/10.1155/2013/848973.

X. Sun, E. V. Stephens, and M. A. Khaleel Sun. 2007. Fatigue Behaviors of Self-Piercing Rivets Joining Similar and Dissimilar Sheet Metals. International Journal of Fatigue. 29(2): 370-86.

Doi: https://doi.org/10.1016/j.ijfatigue.2006.02.054.

R. Porcaro, A. G. Hanssen, M. Langseth, and A. Aalberg. 2006. Self-Piercing Riveting Process: An Experimental and Numerical Investigation. Journal of Materials Processing Technology. 171(1): 10-20.

Doi: https://doi.org/10.1016/j.jmatprotec.2005.05.048.

X. Sun and M. A. Khaleel. 2007. Dynamic Strength Evaluations for Self-Piercing Rivets and Resistance Spot Welds Joining Similar and Dissimilar Metals. International Journal of Impact Engineering. 34(10): 1668-82.

Doi: https://doi.org/10.1016/j.ijimpeng.2006.09.092.

L. Reithmaier and R. Sterkenburg. 2016. Standart Aircraft Handbook for Mechanics and Thecnicians. 7th Edition. Mc Graw Hills.

GMF. 2016. Module7 - Maintenance Practice for Basic Aircraft Maintenance. Jakarta: GMF Learning Service.

Mucha, J. 2014. The Numerical Analysis of the Effect of the Joining Process Parameters on Self-Piercing Riveting Using the Solid Rivet. Archives of Civil and Mechanical Engineering. 14(3): 444-54.

Doi: https://doi.org/10.1016/j.acme.2013.11.002.

J. Mucha and W. Witkowski. 2015. The Structure of the Strength of Riveted Joints Determined in the Lap Joint Tensile Shear Test. Acta Mechanica et Automatica. 9(1): 44-49.

Doi: https://doi.org/10.1515/ama-2015-0009.

J. Mucha. 2013. The Effect of Material Properties and Joining Process Parameters on Behavior of Self-Pierce Riveting Joints Made with the Solid Rivet. Materials and Design. 52: 932-46.

Doi: https://doi.org/10.1016/j.matdes.2013.06.037.

EASA. 2016. Maintenance Practice of Aviation Maintenance Technician Certification Series. Aircraft Technnical Book Company.

P. Kumar. 2018. Basic Mechanical Engineering. 2nd Editi. Pearson.

S. Wunda, A. Z. Johannes, R. K. Pingak, and A. S. Ahab. 2019. Analisis Tegangan, Regangan dan Deformasi Crane Hook Dari Material Baja Aisi 1045 Dan Baja St 37 Menggunakan Software Elmer. Jurnal Fisika: Fisika Sains dan Aplikasinya. 4(2): 131-37.

DOI:https://ejurnal.undana.ac.id/index.php/FISA/article/view/1885.

B. Suroso and D. Prayogi. 2019. Pengaruh Kecepatan Putaran Spindle dan Kedalaman Penggerindaan Terhadap Kekasaran Permukaan Material Baja St 37 Menggunakan Mesin Bubut Bergerinda. Jurnal Rekayasa Material, Manufaktur dan Energi. 2(1): 24-33.

Doi: https://doi.org/10.30596/rmme.v2i1.3066.

FAA. 2018. Aviation Maintenancce Training Handbook Chapter 7 -Aircraft Materials, Hardware and Processes. US Department of Aviation.

Manes, A., M. Giglio, and F. Viganò. 2011. Effect of Riveting Process Parameters on the Local Stress Field of a T-Joint. International Journal of Mechanical Sciences. 53(12): 1039-49.

Doi: https://doi.org/10.1016/j.ijmecsci.2011.07.013.

W. Patra, Ryan, and B.W. Dwi. 2015. Analisis Kekuatan Paku Keling Pada Sub-Asembly Kampas Rem Bus. Jurnal Teknik Mesin. 3(S-1).

T. Kim and J. Lim. 2013. Ultimate Strength of Single Shear Two-Bolted Connections with Austenitic Stainless Steel. International Journal of Steel Structures. 13(1): 117-28.

Doi: https://doi.org/10.1007/s13296-013-1011-z.

A. Haris. 2021. Efek Friction Stir Spot Welding dalam Pemasangan Rivet Terhadap Sifat Mekanik Material Almunium Seri 2024. 7.

Doi: https://doi.org/10.56521/teknika.v7i2.319.

C. Lei, Y. Bi, J. Li, and Y. Ke. 2017. Effect of Riveting Parameters on the Quality of Riveted Aircraft Structures with Slug Rivet. Advances in Mechanical Engineering. 9(11).

Doi: https://doi.org/10.1177/1687814017734710.

N. Senguttuvan and J. Lillymercy. 2015. Joint Strength Analysis of Single Lap Joint In Glass Fiber Composite Material. International Journal of Applied Engineering Research. 10.

http://www.ripublication.com.

Borba, N. Z., B. Kötter, B. Fiedler, J. F. dos Santos, and S. T. Amancio-Filho. 2020. Mechanical Integrity of Friction-Riveted Joints for Aircraft Applications. Composite Structures. 232: 111542.

Doi: https://doi.org/10.1016/j.compstruct.2019.111542.

W. Wronicz. 2018. Experimental Validation of Riveting Process Fe Simulation. Fatigue of Aircraft Structures. 2018(10): 63-72.

Doi: https://doi.org/10.2478/fas-2018-0006.

H. Yu, B. Zheng, X. Xu, and X. Lai. 2019. Residual Stress and Fatigue Behavior of Riveted Lap Joints with Various Riveting Sequences, Rivet Patterns, and Pitches. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 233(12): 2306-19.

Doi: https://doi.org/10.1177/0954405419834481.

G. Saputro, M. A. Rizza, U. S. Amrullah. 2023. Simulation Analysis of Riveted Joint Specimen with Parameter of Working Pressure and Hole Clearance Using Semi-Automatic Riveting Tool. Asian Journal Science and Engineering. 2(1): 47-60.

Doi: http://dx.doi.org/10.51278/ajse.v2i1.397.

W. Wronicz, J. Kaniowski, M. Malicki, P. Kucio, and R. Klewicki. 2017. Experimental and Numerical Study of NACA and Conventional Riveting Procedure. Fatigue of Aircraft Structures. 2017(9): 157-70.

Doi: https://doi.org/10.1515/fas-2017-0012.

G. Li, G. Shi, and N. C. Bellinger. 2010. Effects of Fastener Clearance Fit and Friction Coefficient on the Stress Condition in Triple-Row Riveted Lap Joints. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. April: 1-24.

Doi: https://doi.org/10.2514/6.2010-3025.

G. Li, G. Shi, and N. C. Bellinger. 2011. Stress in Triple-Row Riveted Lap Joints under the Influence of Specific Factors. Journal of Aircraft. 48(2): 527-39.

Doi: https://doi.org/10.2514/1.C031129.

Downloads

Published

2024-06-02

Issue

Section

Science and Engineering

How to Cite

THE EFFECT OF RIVET GUN OPERATING PRESSURE AND HOLE CLEARANCE ON RIVET SHEAR STRENGTH IN SHEET METAL RIVETING PROCESS: -. (2024). Jurnal Teknologi (Sciences & Engineering), 86(4), 27-36. https://doi.org/10.11113/jurnalteknologi.v86.20999