BIOAUGMENTATION AS BIOREMEDIATION APPROACH FOR CONTAMINATED SOIL: A REVIEW
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.21085Keywords:
Bioaugmentation, bioremediation, soil contamination, heavy metals, microorganismsAbstract
The inevitable impacts by the emerging urbans developments towards the quality and function of soil have raised concerns for future environment consequences. Pollutants that evolved from the anthropogenic activities including heavy metals, pesticides, petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) tend to be persistent within the soil and hence, contribute to long term effects towards the environment and human’s health. Researchers discovered the success of bioaugmentation as part of bioremediation as an approach towards degrading the pollutants by employing microorganisms (i.e., bacteria or fungi) to enhance the removal of pollutants. The concept, mechanism, method, and factors affecting bioaugmentation is studied for the past years to explore the thorough process of bioaugmentation. It is claimed that bioaugmentation is directly related to the microbial activity and have three different approaches (autochthonous, allochthonous, and genetically engineering microorganisms). pH, temperature, moisture, and oxidation reduction potential are the key prospects towards bioaugmentation efficiency. The application of bioaugmentation towards each targeted pollutant are studied to certify its capability of degrading, removing, and transforming pollutants into less toxic components.
References
V. A. Myazin, M. V. Korneykova, A. A. Chaporgina, N. V. Fokina, and G. K. Vasilyeva. 2021. The Effectiveness of Biostimulation, Bioaugmentation and Sorption-Biological Treatment of Soil Contaminated with Petroleum Products in the Russian Subarctic (in eng). Microorganisms. 9(8). Doi: 10.3390/microorganisms9081722.
O. C. Ihunwo et al. 2021. Ecological and Human Health Risk Assessment of Total Petroleum Hydrocarbons in Surface Water and Sediment from Woji Creek in the Niger Delta Estuary of Rivers State, Nigeria. Heliyon. 7(8): e07689. Doi: https://doi.org/10.1016/j.heliyon.2021.e07689.
R. Mauri, R. Shinnar, M. d'Amore, P. Giordano, and A. Volpe. 1997. Solvent Extraction of Metal Ions from Contaminated Soil. Air & Waste Management Association’s 90th Annual Meeting & Exhibition, June 8-13, 1997, Toronto, Ontario, Canada.
A. J. Effendi, B. S. Ramadan, and Q. Helmy. 2022. Enhanced remediation of Hydrocarbons Contaminated Soil using Electrokinetic Soil Flushing – Landfarming Processes. Bioresource Technology Reports. 17: 100959. Doi: https://doi.org/10.1016/j.biteb.2022.100959.
K.-H. Wei et al. 2022. Recent Progress on In-situ Chemical Oxidation for the Remediation of Petroleum Contaminated Soil and Groundwater. Journal of Hazardous Materials. 432: 128738. Doi: https://doi.org/10.1016/j.jhazmat.2022.128738.
C.-I. Mawang, A.-S. Azman, A.-S. M. Fuad, and M. Ahamad. 2021. Actinobacteria: An Eco-friendly and Promising Technology for the Bioaugmentation of Contaminants. Biotechnology Reports. 32: e00679. Doi: https://doi.org/10.1016/j.btre.2021.e00679.
S. F. Ahmed et al. 2021. Recent Developments in Physical, Biological, Chemical, and Hybrid Treatment Techniques for Removing Emerging Contaminants from Wastewater. Journal of Hazardous Materials. 416: 125912. Doi: https://doi.org/10.1016/j.jhazmat.2021.125912.
G. Adams, P. Tawari-Fufeyin, S. Okoro, and I. Ehinomen. 2015. Bioremediation, Biostimulation and Bioaugmention: A Review. International Journal of Environmental Bioremediation and Biodegradation. 3: 28-39. Doi: 10.12691/ijebb-3-1-5.
S. Varjani and V. N. Upasani. 2019. Influence of Abiotic Factors, Natural Attenuation, Bioaugmentation and Nutrient Supplementation on Bioremediation of Petroleum Crude Contaminated Agricultural Soil. Journal of Environmental Management. 245: 358-366. Doi: https://doi.org/10.1016/j.jenvman.2019.05.070.
M. Bhattacharya, S. Guchhait, D. Biswas, and S. Datta. 2015. Waste Lubricating Oil Removal in a Batch Reactor by Mixed Bacterial Consortium: A Kinetic Study. Bioprocess and Biosystems Engineering. 38(11): 2095-2106. Doi: 10.1007/s00449-015-1449-9.
D. N. Tarla et al. 2020. Phytoremediation and Bioremediation of Pesticide-Contaminated Soil. Applied Sciences. 10(4): 1217. Available: https://www.mdpi.com/2076-3417/10/4/1217.
D. Gao et al. 2022. Current and Emerging Trends in Bioaugmentation of Organic Contaminated Soils: A Review. Journal of Environmental Management. 320: 115799. Doi: https://doi.org/10.1016/j.jenvman.2022.115799.
M. Herrero and D. C. Stuckey. 2015. Bioaugmentation and its Application in Wastewater Treatment: A Review. Chemosphere. 140: 119-128. Doi: https://doi.org/10.116/j.chemosphere.2014.10.033.
C. Azu, C. Chikere, and G. Okpokwasili. 2016. Bioremediation Techniques-classification based on Site of Application: Principles, Advantages, Limitations and Prospects. World Journal of Microbiology & Biotechnology. 32: 180. Doi: 10.1007/s11274-016-2137-x.
S. Kuppusamy, T. Palanisami, M. Mallavarapu, and R. Naidu. 2016. Biodegradation of polycyclic Aromatic Hydrocarbons (PAHs) by Novel Bacterial Consortia Tolerant to Diverse Physical settings - Assessments in Liquid-and Slurry-phase Systems. International Biodeterioration & Biodegradation. 108: 149-157. Doi: 10.1016/j.ibiod.2015.12.013.
A. Mrozik and Z. Piotrowska-Seget. 2010. Bioaugmentation as a Strategy for Cleaning Up of Soils Contaminated with Aromatic Compounds. Microbiological Research. 165(5): 363-375. Doi: https://doi.org/10.1016/j.micres.2009.08.001.
A. S. Nwankwegu et al. 2022. Bioaugmentation as a Green Technology for Hydrocarbon Pollution Remediation. Problems and Prospects. Journal of Environmental Management. 304: 114313. Doi: https://doi.org/10.1016/j.jenvman.2021.114313.
H. Ma, Y. Zhao, K. Yang, Y. Wang, C. Zhang, and M. Ji. 2022. Application Oriented Bioaugmentation Processes: Mechanism, Performance Improvement and Scale-up. Bioresource Technology. 344: 126192. Doi: https://doi.org/10.1016/j.biortech.2021.126192.
S. González Henao and T. Ghneim-Herrera. 2021. Heavy Metals in Soils and the Remediation Potential of Bacteria Associated with the Plant Microbiome. Frontiers in Environmental Science, Systematic Review. 9. Doi: 10.3389/fenvs.2021.604216.
B. Cai, J. Ma, G. Yan, X. Dai, M. Li, and S. Guo. 2016. Comparison of Phytoremediation, Bioaugmentation and Natural Attenuation for Remediating Saline Soil Contaminated by Heavy Crude Oil. Biochemical Engineering Journal. 112: 170-177. Doi: https://doi.org/10.1016/j.bej.2016.04.018.
X. Liu et al. 2015. Aerobic Granulation Strategy for Bioaugmentation of a Sequencing Batch Reactor (SBR) Treating High Strength Pyridine Wastewater. Journal of Hazardous Materials. 295: 153-160. Doi: https://doi.org/10.1016/j.jhazmat.2015.04.025.
C. Gao, X. Jin, J. Ren, H. Fang, and Y. Yu. 2015. Bioaugmentation of DDT-contaminated Soil by Dissemination of the Catabolic Plasmid pDOD. Journal of Environmental Sciences. 27: 42-50. Doi: https://doi.org/10.1016/j.jes.2014.05.045.
R. G. Lacalle et al. 2020. Gentle Remediation Options for Soil with Mixed Chromium (VI) and Lindane Pollution: Biostimulation, Bioaugmentation, Phytoremediation and Vermiremediation. Heliyon. 6(8): e04550. Doi: https://doi.org/10.1016/j.heliyon.2020.e04550.
EPA. 2000. A Guide to the Sampling and Analysis of Waters, Wastewaters, Soils and Wastes. 1-54.
A. Hassan, A. Pariatamby, I. C. Ossai, and F. S. Hamid. 2020. Bioaugmentation Assisted Mycoremediation of Heavy Metal and/metalloid Landfill Contaminated Soil using Consortia of filamentous Fungi. Biochemical Engineering Journal. 157: 107550. Doi: https://doi.org/10.1016/j.bej.2020.107550.
M. Pacwa-Płociniczak, J. Czapla, T. Płociniczak, and Z. Piotrowska-Seget. 2019. The Effect of Bioaugmentation of Petroleum-contaminated Soil with Rhodococcus Erythropolis Strains on Removal of Petroleum from Soil. Ecotoxicology and Environmental Safety. 169: 615-622. Doi: https://doi.org/10.1016/j.ecoenv.2018.11.081.
M. Bulusu. 2017. Quantifying the Carbon Sequestration Potential of Agroforestry Systems in Kapuas Hulu.
A. Bodor et al. 2020. Intensification of Ex Situ Bioremediation of Soils Polluted with Used Lubricant Oils: A Comparison of Biostimulation and Bioaugmentation with a Special Focus on the Type and Size of the Inoculum. International Journal of Environmental Research and Public Health. 17(11). Doi: 10.3390/ijerph17114106.
R. K. Gangwar et al. 2021. Comparing Soil Chemical and Biological Properties of Salt Affected Soils under Different Land Use Practices in Hungary and India. Eurasian Soil Science. 54(7): 1007-1018. Doi: 10.1134/S1064229321070048.
S. R. S. Abdullah, I. A. Al-Baldawi, A. F. Almansoory, I. F. Purwanti, N. H. Al-Sbani, and S. S. N. Sharuddin. 2020. Plant-assisted Remediation of Hydrocarbons in Water and Soil: Application, Mechanisms, Challenges and Opportunities. Chemosphere. 247: 125932. Doi: https://doi.org/10.1016/j.chemosphere.2020.125932.
I. Purwanti, S. B. Kurniawan, H. Titah, and B. Tangahu. 2018. Identification of Acid and Aluminium Resistant Bacteria Isolated from Aluminium Recycling Area. International Journal of Civil Engineering and Technology. 9.
B. Muthukumar et al. 2022. Characterization of Bacterial Community in Oil-contaminated Soil and Its Biodegradation Efficiency of High Molecular Weight (>C40) Hydrocarbon. Chemosphere. 289: 133168. Doi: https://doi.org/10.1016/j.chemosphere.2021.133168.
H. Qadri, M. F. Qureshi, M. A. Mir, and A. H. Shah. 2021. Glucose - The X Factor for the Survival of Human Fungal Pathogens and Disease Progression in the Host. Microbiological Research. 247: 126725. Doi: https://doi.org/10.1016/j.micres.2021.126725.
R. J. DeBerardinis and C. B. Thompson. 2008. Chapter 14 - Metabolism of Cell Growth and Proliferation. The Molecular Basis of Cancer (Third Edition), J. Mendelsohn, P. M. Howley, M. A. Israel, J. W. Gray, and C. B. Thompson Eds. Philadelphia: W.B. Saunders. 189-203.
C. A. D. Melo et al. 2019. Bioaugmentation as an Associated Technology for Bioremediation of Soil Contaminated with Sulfentrazone. Ecological Indicators. 99: 343-348. Doi: https://doi.org/10.1016/j.ecolind.2018.12.034.
C. A. Melo et al. 2017. Isolation and Characteristics of Sulfentrazone-degrading Bacteria. J Environ Sci Health B. 52(2): 115-121. Doi: 10.1080/03601234.2016.1248136.
F. Davami, F. Eghbalpour, L. Nematollahi, F. Barkhordari, and F. Mahboudi. 2015. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles. Iran Biomed J. 19(4): 194-205. Doi: 10.7508/ibj.2015.04.002.
M. Andreolli, S. Lampis, P. Brignoli, and G. Vallini. 2015. Bioaugmentation and Biostimulation as Strategies for the Bioremediation of a Burned Woodland Soil Contaminated by toxic Hydrocarbons: A Comparative Study. Journal of Environmental Management. 153: 121-131. Doi: https://doi.org/10.1016/j.jenvman.2015.02.007.
B. Muthukumar et al. 2023. Influence of Bioaugmentation in Crude Oil Contaminated Soil by Pseudomonas Species on the Removal of Total Petroleum Hydrocarbon. Chemosphere. 310: 136826. Doi: https://doi.org/10.1016/j.chemosphere.2022.136826.
A. Dwivedi, S. Chitranshi, A. Gupta, A. Kumar, and J. Bhat. 2019. Assessment of the Petroleum Oil Degradation Capacity of Indigenous Bacterial Species Isolated from Petroleum Oil-Contaminated Soil. International Journal of Environmental Research. 13. Doi: 10.1007/s41742-019-00210-y.
S. Abdulsalam, I. M. Bugaje, S. S. Adefila, and S. Ibrahim. 2011. Comparison of Biostimulation and Bioaugmentation for Remediation of Soil Contaminated with Spent Motor Oil. International Journal of Environmental Science & Technology. 8(1): 187-194. Doi: 10.1007/BF03326208.
A. Lara-Moreno, E. Morillo, F. Merchán, and J. Villaverde. 2021. A Comprehensive Feasibility Study of Effectiveness and Environmental Impact of PAH Bioremediation using an Indigenous Microbial Degrader Consortium and a Novel Strain Stenotrophomonas Maltophilia CPHE1 Isolated from an Industrial Polluted Soil. J Environ Manage. 289: 112512. Doi: 10.1016/j.jenvman.2021.112512.
F. Madrid, M. Rubio-Bellido, J. Villaverde, A. Peña, and E. Morillo. 2019. Natural and Assisted Dissipation of Polycyclic Aromatic Hydrocarbons in a Long-term Co-contaminated Soil with Creosote and Potentially Toxic Elements. Science of the Total Environment. 660: 705-714. Doi: https://doi.org/10.1016/j.scitotenv.2018.12.376.
A. Lara-Moreno, E. Morillo, F. Merchán, F. Madrid, and J. Villaverde. 2022. Bioremediation of a Trifluralin Contaminated Soil using Bioaugmentation with Novel Isolated Bacterial Strains and Cyclodextrin. Science of the Total Environment. 840: 156695. Doi: https://doi.org/10.1016/j.scitotenv.2022.156695.
D. Keaney, B. Lucey, and K. Finn. 2024. A Review of Environmental Challenges Facing Martian Colonisation and the Potential for Terrestrial Microbes to Transform a Toxic Extraterrestrial Environment. Challenges. 15(5). Doi: 10.3390/challe15010005.
Q. Hong, Z. Zhang, Y. Hong, and S. Li. 2007. A Microcosm Study on Bioremediation of Fenitrothion-contaminated Soil using Burkholderia sp. FDS-1. International Biodeterioration & Biodegradation. 59(1): 55-61. Doi: https://doi.org/10.1016/j.ibiod.2006.07.013.
G. A. Ajoku and M. K. Oduola. 2013. Kinetic Model of pH Effect on Bioremediation of Crude Petroleum Contaminated Soil. 1. Model Development. Journal of Chemical Engineering. 1: 6.
S. Bamforth and I. Singleton. 2005. Bioremediation of Polycyclic Aromatic Hydrocarbons: Current Knowledge and Future Directions. Journal of Chemical Technology and Biotechnology. 80: 723-736. Doi: 10.1002/jctb.1276.
E. M. Brito et al. 2015. Impact of Hydrocarbons, PCBs and Heavy Metals on Bacterial Communities in Lerma River, Salamanca, Mexico: Investigation of Hydrocarbon Degradation Potential. Sci Total Environ. 521-522: 1-10. Doi: 10.1016/j.scitotenv.2015.02.098.
X. Li, J. He, and S. Li. 2007. Isolation of a Chlorpyrifos-Degrading Bacterium, Sphingomonas sp. strain Dsp-2, and Cloning of the mpd Gene. Research in Microbiology. 158(2): 143-149. Doi: https://doi.org/10.1016/j.resmic.2006.11.007.
L. T. Popoola, A. S. Yusuff, A. A. Adeyi, and O. O. Omotara. 2022. Bioaugmentation and Biostimulation of Crude Oil Contaminated Soil: Process Parameters Influence. South African Journal of Chemical Engineering. 39: 12-18. Doi: https://doi.org/10.1016/j.sajce.2021.10.003.
M.-X. Wang, Q.-L. Zhang, and S.-J. Yao. 2015. A Novel Biosorbent Formed of Marine-derived Penicillium Janthinellum Mycelial Pellets for Removing Dyes from Dye-Containing Wastewater. Chemical Engineering Journal. 259: 837-844. Doi: https://doi.org/10.1016/j.cej.2014.08.003.
F. Rukshana, C. R. Butterly, J. A. Baldock, and C. Tang. 2011. Model Organic Compounds Differ in their Effects on pH Changes of Two Soils Differing in Initial pH. Biology and Fertility of Soils. 47(1): 51-62. Doi: 10.1007/s00374-010-0498-0.
B. A. Bandowe, M. Bigalke, L. Boamah, E. Nyarko, F. K. Saalia, and W. Wilcke. 2014. Polycyclic Aromatic Compounds (PAHs and oxygenated PAHs) and Trace Metals in Fish Species from Ghana (West Africa): Bioaccumulation and Health Risk Assessment. Environ Int. 65: 135-46. Doi: 10.1016/j.envint.2013.12.018.
S.-H. Liu et al. 2017. Bioremediation Mechanisms of Combined Pollution of PAHs and Heavy Metals by Bacteria and Fungi: A Mini Review. Bioresource Technology. 224: 25-33. Doi: https://doi.org/10.1016/j.biortech.2016.11.095.
P. Sharma, S. P. Singh, S. Kishor, Y. Tong, and S. Parakh. 2022. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered. 13: 4923-4938. Doi: 10.1080/21655979.2022.2037273.
R. Praveen and R. Nagalakshmi. 2022. Review on Bioremediation and Phytoremediation Techniques of Heavy Metals in Contaminated Soil from Dump Site. Materials Today: Proceedings. 68: 1562-1567. Doi: https://doi.org/10.1016/j.matpr.2022.07.190.
A. Ferraro et al. 2021. Bioaugmentation Strategy to Enhance Polycyclic Aromatic Hydrocarbons Anaerobic Biodegradation in Contaminated Soils. Chemosphere. 275: 130091. Doi: https://doi.org/10.1016/j.chemosphere.2021.130091.
J. Michalska, A. Piński, J. Żur, and A. Mrozik. 2020. Selecting Bacteria Candidates for the Bioaugmentation of Activated Sludge to Improve the Aerobic Treatment of Landfill Leachate. Water. 12(1). Doi: 10.3390/w12010140.
A. Malik et al. 2003. Coaggregation among Nonflocculating Bacteria Isolated from Activated Sludge. Appl Environ Microbiol. 69(10): 6056-63. Doi: 10.1128/aem.69.10.6056-6063.2003.
R. Kurane, K. Hatamochi, T. Kakuno, M. Kiyohara, M. Hirano, and Y. Taniguchi. 1994. Production of a Bioflocculant by Rhodococcus Erythropolis S-1 Grown on Alcohols. Bioscience, Biotechnology, and Biochemistry. 58(2): 428-429. Doi: 10.1271/bbb.58.428.
E. Déziel, Y. Comeau, and R. Villemur. 2001. Initiation of Biofilm Formation by Pseudomonas Aeruginosa 57RP Correlates with Emergence of Hyperpiliated and Highly Adherent Phenotypic Variants Deficient in Swimming, Swarming, and Twitching Motilities. J Bacteriol. 183(4): 1195-204. Doi: 10.1128/jb.183.4.1195-1204.2001.
V. Lakshmanan, D. Shantharaj, G. Li, A. L. Seyfferth, D. Janine Sherrier, and H. P. Bais. 2015. A Natural Rice Rhizospheric Bacterium Abates Arsenic Accumulation in Rice (Oryza sativa L.). Planta. 242(4): 1037-50. Doi: 10.1007/s00425-015-2340-2.
Z. Ronen, L. Vasiluk, A. Abeliovich, and A. Nejidat. 2000. Activity and Survival of Tribromophenol-degrading Bacteria in a Contaminated Desert Soil. Soil Biology and Biochemistry. 32: 1643-1650. Doi: 10.1016/S0038-0717(00)00080-8.
S. Bala et al. 2022. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics. 10(8): 19. Doi: 10.3390/toxics10080484.
H. Zhang, X. Yuan, T. Xiong, H. Wang, and L. Jiang. 2020. Bioremediation of Co-contaminated Soil with Heavy Metals and Pesticides: Influence Factors, Mechanisms and Evaluation Methods. Chemical Engineering Journal. 398: 125657. Doi: https://doi.org/10.1016/j.cej.2020.125657.
S. B. Kurniawan et al. 2022. Practical Limitations of Bioaugmentation in treating Heavy Metal Contaminated Soil and Role of Plant Growth Promoting Bacteria in Phytoremediation as a Promising Alternative Approach. Heliyon. 8(4): e08995. Doi: https://doi.org/10.1016/j.heliyon.2022.e08995.
A. Pariatamby and Y. L. Kee. 2016. Persistent Organic Pollutants Management and Remediation. Procedia Environmental Sciences. 31: 842-848.
S. Ghosh et al. 2019. Assessing the Potential Ecological Risk of Co, Cr, Cu, Fe and Zn in the Sediments of Hooghly–Matla Estuarine System, India. Environmental Geochemistry and Health. 41(1): 53-70. Doi: 10.1007/s10653-018-0119-7.
O. Oziegbe, A. O. Oluduro, E. J. Oziegbe, E. F. Ahuekwe, and S. J. Olorunsola. 2021. Assessment of heavy Metal Bioremediation Potential of Bacterial Isolates from Landfill Soils. Saudi Journal of Biological Sciences. 28(7): 3948-3956. Doi: https://doi.org/10.1016/j.sjbs.2021.03.072.
S. Pourfadakari et al. 2019. Remediation of PAHs Contaminated Soil using a Sequence of Soil Washing with Biosurfactant Produced by Pseudomonas Aeruginosa Strain PF2 and Electrokinetic Oxidation of Desorbed Solution, Effect of Electrode Modification with Fe3O4 Nanoparticles. Journal of Hazardous Materials. 379: 120839. Doi: https://doi.org/10.1016/j.jhazmat.2019.120839.
J. V. Priyanka et al. 2022. Bioremediation of Soil Contaminated with Toxic Mixed Reactive Azo Dyes by Co-cultured Cells of Enterobacter Cloacae and Bacillus subtilis. Environmental Research. 204: 112136. Doi: https://doi.org/10.1016/j.envres.2021.112136.
K. L. Njoku, O. R. Akinyede, and O. F. Obidi. 2020. Microbial Remediation of Heavy Metals Contaminated Media by Bacillus megaterium and Rhizopus stolonifer. Scientific African. 10: e00545. Doi: https://doi.org/10.1016/j.sciaf.2020.e00545.
Q. Li et al. 2022. Rhizospheric Mechanisms of Bacillus Subtilis Bioaugmentation-assisted Phytostabilization of Cadmium-contaminated Soil. Science of the Total Environment. 825: 154136. Doi: https://doi.org/10.1016/j.scitotenv.2022.154136.
C. Emenike, L. Winney, M. Fahmi, N. Jalil, A. Periathamby, and S. H. Fauziah. 2016. Optimal Removal of Heavy Metals From Leachate Contaminated Soil Using Bioaugmentation Process. CLEAN - Soil, Air, Water. 45. Doi: 10.1002/clen.201500802.
P. Francis Prashanth, B. Shravani, R. Vinu, L. M, and V. Ramesh Prabu. 2021. Production of Diesel Range Hydrocarbons from Crude Oil Sludge via Microwave-assisted Pyrolysis and Catalytic Upgradation. Process Safety and Environmental Protection. 146: 383-395. Doi: https://doi.org/10.1016/j.psep.2020.08.025.
S. S. N. Sharuddin, S. R. S. Abdullah, H. A. Hasan, A. R. Othman, and N. I. Ismail. 2021. Potential Bifunctional Rhizobacteria from Crude Oil Sludge for Hydrocarbon Degradation and Biosurfactant Production. Process Safety and Environmental Protection. 155: 108-121. Doi: https://doi.org/10.1016/j.psep.2021.09.013.
S. H. Lee, B. I. Oh, and J. G. Kim. 2008. Effect of Various Amendments on Heavy Mineral Oil Bioremediation and Soil Microbial Activity. Bioresour Technol. 99(7): 2578-87. Doi: 10.1016/j.biortech.2007.04.039.
I. D. Behera, M. Nayak, A. Mishra, B. C. Meikap, and R. Sen. 2022. Strategic Implementation of Integrated Bioaugmentation and Biostimulation for Efficient Mitigation of Petroleum Hydrocarbon Pollutants from Terrestrial and Aquatic Environment. Marine Pollution Bulletin. 177:113492. Doi: https://doi.org/10.1016/j.marpolbul.2022.113492.
S. Lladó, A. M. Solanas, J. de Lapuente, M. Borràs, and M. Viñas. 2012. A Diversified Approach to evaluate Biostimulation and Bioaugmentation Strategies for Heavy-oil-contaminated Soil. Sci Total Environ. 435-436: 262-9. Doi: 10.1016/j.scitotenv.2012.07.032.
M. T. Bidja Abena, T. Li, M. N. Shah, and W. Zhong. 2019. Biodegradation of Total Petroleum Hydrocarbons (TPH) in Highly Contaminated Soils by Natural Attenuation and Bioaugmentation. Chemosphere. 234: 864-874. Doi: https://doi.org/10.1016/j.chemosphere.2019.06.111.
M. Wu et al. 2016. Bioaugmentation and Biostimulation of Hydrocarbon Degradation and the Microbial Community in a Petroleum-contaminated Soil. International Biodeterioration & Biodegradation. 107: 158-164. Doi: https://doi.org/10.1016/j.ibiod.2015.11.019.
A. C. Agnello, M. Bagard, E. D. van Hullebusch, G. Esposito, and D. Huguenot. 2016. Comparative Bioremediation of Heavy Metals and Petroleum Hydrocarbons Co-contaminated Soil by Natural Attenuation, Phytoremediation, Bioaugmentation and Bioaugmentation-assisted Phytoremediation. Science of the Total Environment. 563-564: 693-703. Doi: https://doi.org/10.1016/j.scitotenv.2015.10.061.
F. Suja et al. 2014. Effects of Local Microbial Bioaugmentation and Biostimulation on the Bioremediation of Total Petroleum Hydrocarbons (TPH) in Crude Oil Contaminated Soil based on Laboratory and Field Observations. International Biodeterioration & Biodegradation. 90: 115-122. Doi: 10.1016/j.ibiod.2014.03.006.
X. Cao et al. 2022. Amendments and Bioaugmentation Enhanced Phytoremediation and Micro-ecology for PAHs and Heavy Metals Co-contaminated Soils. Journal of Hazardous Materials. 426: 128096. Doi: https://doi.org/10.1016/j.jhazmat.2021.128096.
P. Innemanová, A. Filipová, K. Michalíková, L. Wimmerová, and T. Cajthaml. 2018. Bioaugmentation of PAH-contaminated Soils: A Novel Procedure for Introduction of Bacterial Degraders into Contaminated Soil. Ecological Engineering. 118: 93-96. Doi: https://doi.org/10.1016/j.ecoleng.2018.04.014.
Z. Zhao and J. Wong. 2009. Biosurfactants from Acinetobacter Calcoaceticus BU03 Enhance the Solubility and Biodegradation of Phenanthrene. Environmental Technology. 30: 291-9. Doi: 10.1080/09593330802630801.
N. Zhou, H. Guo, Q. Liu, Z. Zhang, J. Sun, and H. Wang. 2022. Bioaugmentation of Polycyclic Aromatic Hydrocarbon (PAH)-contaminated Soil with the Nitrate-reducing Bacterium PheN7 under Anaerobic Condition. Journal of Hazardous Materials. 439: 129643. Doi: https://doi.org/10.1016/j.jhazmat.2022.129643.
C. A. Damalas and I. G. Eleftherohorinos. 2011. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int J Environ Res Public Health. 8(5): 1402-19. Doi: 10.3390/ijerph8051402.
A. Alvarez et al. 2017. Actinobacteria: Current Research and Perspectives for Bioremediation of Pesticides and Heavy Metals. Chemosphere. 166: 41-62. Doi: https://doi.org/10.1016/j.chemosphere.2016.09.070.
A. Chowdhury, S. Pradhan, M. Saha, and N. Sanyal. 2008. Impact of Pesticides on Soil Microbiological Parameters and Possible Bioremediation Strategies. Indian J Microbiol. 48(1): 114-27. Doi: 10.1007/s12088-008-0011-8.
Q. Wang, S. Xie, and R. Hu. 2013. Bioaugmentation with Arthrobacter sp. strain DAT1 for Remediation of Heavily Atrazine-Contaminated Soil. International Biodeterioration & Biodegradation. 77: 63-67. Doi: https://doi.org/10.1016/j.ibiod.2012.11.003.
M. Cycoń, A. Mrozik, and Z. Piotrowska-Seget. 2017. Bioaugmentation as a Strategy for the Remediation of Pesticide-polluted Soil: A Review. Chemosphere. 172: 52-71. Doi: https://doi.org/10.1016/j.chemosphere.2016.12.129.
J. B. Epp, P. R. Schmitzer, and G. D. Crouse. 2018. Fifty Years of Herbicide Research: Comparing the Discovery of Trifluralin and Halauxifen-Methyl. Pest Manag Sci. 74(1): 9-16. Doi: 10.1002/ps.4657.
J. Barot and K. Chaudhari. 2020. Analysis of Dimethoate Degradation by Kocuria Turfanensis using GC-MS. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 22: 107-110.
S. Zong et al. 2023. Bioaugmentation of Cd(II) Removal in High-salinity Wastewater by Engineered Escherichia coli Harbouring EC20 and irrE Genes. Journal of Cleaner Production. 414: 137656. Doi: https://doi.org/10.1016/j.jclepro.2023.137656.
L. Zhang et al. 2023. Efficient Utilization of Biogenic Manganese Oxides in Bioaugmentation Columns for Remediation of Thallium(I) Contaminated Groundwater. Journal of Hazardous Materials. 452: 131225. Doi: https://doi.org/10.1016/j.jhazmat.2023.131225.
J. Wang et al. 2023. Bioaugmentation with Tetrasphaera to Improve Biological Phosphorus Removal from Anaerobic Digestate of Swine Wastewater. Bioresource Technology. 373: 128744. Doi: https://doi.org/10.1016/j.biortech.2023.128744.
R. Werheni Ammeri et al. 2022. Combined Bioaugmentation and Biostimulation Techniques in Bioremediation of Pentachlorophenol Contaminated Forest Soil. Chemosphere. 290: 133359. Doi: https://doi.org/10.1016/j.chemosphere.2021.133359.
M. E. Mancera-López, F. Esparza-García, B. Chávez-Gómez, R. Rodríguez-Vázquez, G. Saucedo-Castañeda, and J. Barrera-Cortés. 2008. Bioremediation of an Aged Hydrocarbon-contaminated Soil by a Combined System of Biostimulation–bioaugmentation with Filamentous Fungi. International Biodeterioration & Biodegradation. 61(2): 151-160. Doi: https://doi.org/10.1016/j.ibiod.2007.05.012.
H. Zafar, N. Peleato, and D. Roberts. 2023. Bioaugmentation with Bacillus subtilis and Cellulomonas fimi to Enhance the Biodegradation of Complex Carbohydrates in MFC-fed Fruit Waste. Biomass and Bioenergy. 174: 106843.doi: https://doi.org/10.1016/j.biombioe.2023.106843.
I. Aguilar-Romero et al. 2022. A Novel and Affordable Bioaugmentation Strategy with Microbial Extracts to Accelerate the Biodegradation of Emerging Contaminants in Different Media. Science of the Total Environment. 834: 155234. Doi: https://doi.org/10.1016/j.scitotenv.2022.155234.
B. Dalecka, M. Strods, P. Cacivkins, E. Ziverte, G. K. Rajarao, and T. Juhna. 2021. Removal of Pharmaceutical Compounds from Municipal Wastewater by Bioaugmentation with Fungi: An Emerging Strategy using Fluidized Bed Pelleted Bioreactor. Environmental Advances. 5: 100086. Doi: https://doi.org/10.1016/j.envadv.2021.100086.
Y. Dai et al. 2023. New Insight into the Mechanisms of Autochthonous Fungal Bioaugmentation of Phenanthrene in Petroleum Contaminated Soil by Stable Isotope Probing. Journal of Hazardous Materials. 452: 131271. Doi: https://doi.org/10.1016/j.jhazmat.2023.131271.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.