KEGAGALAN MEKANIKAL DALAM SEL FUEL MEMBRAN PERTUKARAN PROTON
MECHANICAL FAILURE IN PROTON EXCHANGE MEMBRANE FUEL CELLS
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.21107Keywords:
Fuel cell, degradation, mechanical failure, proton exchange membrane fuel cell componentAbstract
Proton exchange membrane fuel cell (PEMFC) is one of the most energy-efficient and energy-dense devices. PEMFC technology is outstanding due to its high durability, performance, dependability, and low unit price. PEMFC is comprised of multiple components that are susceptible to damage, resulting in system failure. Component functionality can degrade during the design process, during assembly, or during operation. Gradual component failure will lead to mechanical failure, which can result in unit damage and incapacity to operate. PEMFC's acceptance as a commercially sophisticated technology is hindered in part by its susceptibility to mechanical failure. Therefore, it is vital to comprehend and analyze the failure mechanism of frequently failing components based on the unit's arrangement in order to reduce component failure in the future through the design and development of new components.
References
D. Stolten, B. Emonts, F. Jülich GmbH, W.-V. Verlag GmbH, and C. KGaA. 2013. Fuel Cell Science and Engineering: Materials, Processes, Systems and Technology. Platin. Met. Rev. 57(1): 66–69. Doi: 10.1002/9783527650248.
N. Sulaiman, M. A. Hannan, A. Mohamed, E. H. Majlan, and W. R. Wan Daud. 2015. A Review on Energy Management System for Fuel Cell Hybrid Electric Vehicle: Issues and Challenges. Renew. Sustain. Energy Rev. 52: 802–814. Doi: 10.1016/j.rser.2015.07.132.
X. Chen et al. 2021. Performance Study on a Stepped Flow Field Design for Bipolar Plate in PEMFC. Energy Reports. 7: 336–347. Doi: 10.1016/j.egyr.2021.01.003.
F. C. Lee et al. 2022. Alternative Architectures and Materials for PEMFC Gas Diffusion Layers: A Review and Outlook. Renew. Sustain. Energy Rev. 166(May). Doi: 10.1016/j.rser.2022.112640.
S. T. Ravenkar and P. Majumdar. 2016. Fuel Cells Principles Design and Analysis, 1st ed. CRC Press, Taylor & Francis Group.
L. Wang, A. Husar, T. Zhou, and H. Liu. 2003. A Parametric Study of PEM Fuel Cell Performances. Int. J. Hydrogen Energy. 28(11): 1263–1272. Doi: 10.1016/S0360-3199(02)00284-7.
Greenspec. 2023. Fuel Cells: Heat and Electricity.
Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher. 2011. A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research. Appl. Energy. 88(4): 981–1007. Doi: 10.1016/j.apenergy.2010.09.030.
B. G. Pollet, A. A. Franco, H. Su, H. Liang, and S. Pasupathi. 2016. Proton Exchange Membrane Fuel Cells. 10.1016/B978-1-78242-363-8.00001-3.
J. H. Wee. 2007. Applications of Proton Exchange Membrane Fuel Cell Systems. Renew. Sustain. Energy Rev. 11(8): 1720–1738. Doi: 10.1016/j.rser.2006.01.005.
R. Borup et al. 2007. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chem Rev. 107(10): 390451. Doi: 10.1021/cr050182l.
Felix N. Büchi Minoru Inaba Thomas J. Schmidt. 2009. Polymer Electrolyte Fuel Cell Durability. 10.1007/978-0-387-85536-3.
M. H. S. Bargal, M. A. A. Abdelkareem, Q. Tao, J. Li, J. Shi, and Y. Wang. 2020. Liquid Cooling Techniques in Proton Exchange Membrane Fuel Cell Stacks: A Detailed Survey. Alexandria Eng. J. 59(2): 635–655. Doi: 10.1016/j.aej.2020.02.005.
D. Garraín, Y. Lechón, and C. de la Rúa. 2011. Polymer Electrolyte Membrane Fuel Cells (PEMFC) in Automotive Applications: Environmental Relevance of the Manufacturing Stage. Smart Grid Renew. Energy. 02(02): 68–74. Doi: 10.4236/sgre.2011.22009.
S. Kaytakoǧlu and L. Akyalçin. 2007. Optimization of Parametric Performance of a PEMFC. Int. J. Hydrogen Energy. 32(17): 4418–4423. Doi: 10.1016/j.ijhydene.2007.06.025.
D. Yang, Y. Tan, B. Li, P. Ming, Q. Xiao, and C. Zhang. 2022. A Review of the Transition Region of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells: Design, Degradation, and Mitigation. Membranes (Basel). 12(3). Doi: 10.3390/membranes12030306.
W. L. Gellett, D. C. Dunwoody, and J. Leddy. 2020. Window Gasketing for Self Humidified H2|O2 and H2 |Air Polymer Electrolyte Membrane Fuel Cells Fed Dry Gases. J. Electroanal. Chem. 875. Doi: 10.1016/j.jelechem.2020.114695.
S. Shamim, K. Sudhakar, B. Choudhary, and J. Anwar. 2015. A Review on Recent Advances in Proton Exchange Membrane Fuel Cells : Materials, Technology and Applications. 6: 89–100.
M. Gabbasa, K. Sopian, A. Fudholi, and N. Asim. 2014. A Review of Unitized Regenerative Fuel Cell Stack: Material, Design and Research Achievements. Int. J. Hydrogen Energy. 39(31): 17765–17778. Doi: 10.1016/j.ijhydene.2014.08.121.
D. Papageorgopoulos. 2010. An Introduction to the 2010 Fuel Cell Pre-Solicitation Workshop. Lakewood, Colorado.
Z. Liu, L. Sun, W. Zhu, Y. Li, H. Pei, and L. Xing. 2023. Investigation of the Current Density’s Non-uniform Distribution in Dead-end PEMFC with Multi-zone Measurement Methods. Energy Convers. Manag. 20(October). Doi: 10.1016/j.ecmx.2023.100478.
B. Liu, M. Y. Wei, W. Zhang, and C. W. Wu. 2016. Effect of Impact Acceleration on Clamping Force Design of Fuel Cell Stack. 303: 118–125. Doi: 10.1016/j.jpowsour.2015.10.061.
O. Z. Sharaf and M. F. Orhan. 2014. An Overview of Fuel Cell Technology: Fundamentals and Applications. Renewable and Sustainable Energy Reviews. 32: 810–853. Doi: 10.1016/j.rser.2014.01.012.
A. Vasilyev, J. Andrews, L. M. Jackson, S. J. Dunnett, and B. Davies. 2017. Component-based Modelling of PEM Fuel Cells with Bond Graphs. Int. J. Hydrogen Energy. 42(49): 29406–29421. Doi: 10.1016/j.ijhydene.2017.09.004.
L. F. Liu, B. Liu, and C. W. Wu. 2017. Reliability Prediction of Large Fuel Cell Stack based on Structure Stress Analysis. J. Power Sources. 363: 95–102. Doi: 10.1016/j.jpowsour.2017.06.041.
H. Nakajima, T. Konomi, and T. Kitahara. 2007. Direct Water Balance Analysis on a Polymer Electrolyte Fuel Cell (PEFC): Effects of Hydrophobic Treatment and Micro-porous Layer Addition to the Gas Diffusion Layer of a PEFC on Its Performance during a Simulated Start-up Operation. 171: 457–463. Doi: 10.1016/j.jpowsour.2007.06.004.
E. Wang, P. Shi, and C. Du. 2008. Treatment and Characterization of Gas Diffusion Layers by Sucrose Carbonization for PEMFC Applications. 10: 555–558. Doi: 10.1016/j.elecom.2008.01.031.
S. Karimi, N. Fraser, B. Roberts, and F. R. Foulkes. 2012. A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods. Adv. Mater. Sci. Eng. Doi: 10.1155/2012/828070.
J. Liu, L. Zhang, B. Yuan, Y. Zhang, Z. Yang, and J. Huang. 2024. Design and Development of Coating for Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cell (PEMFC): A Review. Mater. Des. September: 113338. Doi: 10.1016/j.matdes.2024.113338.
R. Taherian. 2014. A Review of Composite and Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cell: Materials, Fabrication, and Material Selection. J. Power Sources. 265: 370–390. Doi: 10.1016/j.jpowsour.2014.04.081.
O. A. Alo, I. O. Otunniyi, Hc. Pienaar, and S. E. Iyuke. 2017. Materials for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cell: Performance Criteria and Current Benchmarks. Procedia Manuf. 7: 395–401. Doi: 10.1016/j.promfg.2016.12.011.
E. Alizadeh, M. M. Barzegari, M. Momenifar, M. Ghadimi, and S. H. M. Saadat. 2016. Investigation of Contact Pressure Distribution over the Active Area of PEM Fuel Cell Stack. Int. J. Hydrogen Energy. 41(4): 3062–3071. Doi: 10.1016/j.ijhydene.2015.12.057.
L. Peng, P. Yi, and X. Lai. 2014. Design and Manufacturing of stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy. 39(36): 21127–21153. Doi: 10.1016/j.ijhydene.2014.08.113.
R. A. Antunes, M. C. L. Oliveira, G. Ett, and V. Ett. 2010. Corrosion of Metal Bipolar Plates for PEM Fuel Cells: A Review. Int. J. Hydrogen Energy. 35(8): 3632–3647. Doi: 10.1016/j.ijhydene.2010.01.059.
M. Langemann, D. L. Fritz, M. Müller, and D. Stolten. 2015. Validation and Characterization of Suitable Materials for Bipolar Plates in PEM Water Electrolysis. Int. J. Hydrogen Energy. 40(35): 11385–11391. Doi: 10.1016/j.ijhydene.2015.04.155.
T. J. Toops et al. 2014. Evaluation of Nitrided Titanium Separator Plates for Proton Exchange Membrane Electrolyzer Cells. J. Power Sources. 272: 954–960. Doi: 10.1016/j.jpowsour.2014.09.016.
J. Wang. 2017. System Integration, Durability and Reliability of Fuel Cells: Challenges and Solutions. Appl. Energy. 189: 460–479. Doi: 10.1016/j.apenergy.2016.12.083.
J. Wu, Q. Liu, and H. Fang. 2006. Toward the Optimization of Operating Conditions for Hydrogen Polymer Electrolyte Fuel Cells. J. Power Sources.156(2): 388–399. Doi: 10.1016/j.jpowsour.2005.05.091.
B. D. Cunningham. 2007. Development of Compression Moldable Polymer Composite Bipolar Plates for Fuel Cells.
H. Tawfik, Y. Hung, and D. Mahajan. 2007. Metal Bipolar Plates for PEM Fuel Cell-A Review. J. Power Sources. 163(2): 755–767. Doi: 10.1016/j.jpowsour.2006.09.088.
S. A. Gamboa, J. G. Gonzalez-Rodriguez, E. Valenzuela, B. Campillo, P. J. Sebastian, and A. Reyes-Rojas. 2006. Evaluation of the Corrosion Resistance of Ni-Co-B Coatings in Simulated PEMFC Environment. Electrochim. Acta. 51(19): 4045–4051. Doi: 10.1016/j.electacta.2005.11.021.
M. C. Li, C. L. Zeng, S. Z. Luo, J. N. Shen, H. C. Lin, and C. N. Cao. 2003. Electrochemical Corrosion Characteristics of Type 316 Stainless Steel in Simulated Anode Environment for PEMFC. Electrochim. Acta. 48(12): 1735–1741. Doi: 10.1016/S0013-4686(03)00113-0.
S.-J. Lee, C.-H. Huang, J.-J. Lai, and Y.-P. Chen. 2004. Corrosion-resistant Component for PEM Fuel Cells. J. Power Sources. 131(1–2): 162–168. Doi: 10.1016/j.jpowsour.2004.01.008.
M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, and C. Cao. 2004. Corrosion Behavior of TiN Coated Type 316 Stainless Steel in Simulated PEMFC Environments. Corros. Sci. 46(6): 1369–1380. Doi: 10.1016/S0010-938X(03)00187-2.
M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten. 2013, A Comprehensive Review on PEM Water Electrolysis. Int. J. Hydrogen Energy. 38(12): 4901–4934. Doi: 10.1016/j.ijhydene.2013.01.151.
A. Nabovati, J. Hinebaugh, A. Bazylak, and C. H. Amon. 2014. Effect of Porosity Heterogeneity on the Permeability and Tortuosity of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells. J. Power Sources. 248: 83–90. Doi: 10.1016/j.jpowsour.2013.09.061.
C. L. Briant, Z. F. Wang, and N. Chollocoop. 2002. Hydrogen Embrittlement of Commercial Purity Titanium. Corros. Sci. 44(8): 1875–1888. Doi: 10.1016/S0010-938X(01)00159-7.
M. B. Djukic, V. S. Zeravcic, G. Bakic, A. Sedmak, and B. Rajicic. 2014. Hydrogen Embrittlement of Low Carbon Structural Steel. Procedia Mater. Sci. 3: 1167–1172. Doi: 10.1016/j.mspro.2014.06.190.
M. B. Djukic, G. M. Bakic, V. S. Zeravcic, A. Sedmak, and B. Rajicic. 2016. Hydrogen Embrittlement of Industrial Components: Prediction, Prevention, and Models. Corrosion. 72(7): 943–961. Doi: 10.5006/1958.
Q. Feng et al. 2017. A Review of Proton Exchange Membrane Water Electrolysis on Degradation Mechanisms and Mitigation Strategies. J. Power Sources. 366: 33–55. Doi: 10.1016/j.jpowsour.2017.09.006.
K. E. Ayers et al. 2010. Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. ECS Trans. 33(1): 3–15.
H.-Y. Jung, S.-Y. Huang, P. Ganesan, and B. N. Popov. 2009. Performance of Gold-coated Titanium Bipolar Plates in Unitized Regenerative Fuel Cell Operation. J. Power Sources. 194(2): 972–975. Doi: 10.1016/j.jpowsour.2009.06.030.
A. S. Gago et al. 2016. Protective Coatings on Stainless Steel Bipolar Plates for Proton Exchange Membrane (PEM) Electrolysers. J. Power Sources. 307: 815–825. Doi: 10.1016/j.jpowsour.2015.12.071.
R. Günzel, S. Mändl, E. Richter, A. Liu, B. Y. Tang, and P. K. Chu. 1999. Corrosion Protection of Titanium by Deposition of Niobium Thin Films. Surf. Coatings Technol. 116–119: 1107–1110. Doi: 10.1016/S0257-8972(99)00321-7.
N. Alonso-Falleiros and S. Wolynec. 1998. Effect of Niobium on Corrosion Resistance to Sulfuric Acid of 430 Ferritic Stainless Steel. Mater. Res. 1(1): 39–45. Doi: 10.1590/S1516-14391998000100007.
P. Lettenmeier et al. 2016. Nanosized IrOx-Ir Catalyst with Relevant Activity for Anodes of Proton Exchange Membrane Electrolysis Produced by a Cost-Effective Procedure. Angew. Chemie - Int. Ed. 55(2): 742–746. Doi: 10.1002/anie.201507626.
T. Nishikiori, T. Nohira, and Y. Ito. 2001. Hydrogen Impermeability of TiN Films and Its Dependence on Nitrogen Concentration at High Temperatures. J. Electrochem. Soc. 148(1): E52. Doi: 10.1149/1.1344551.
H. Ito, T. Maeda, A. Nakano, and H. Takenaka. 2011. Properties of Nafion Membranes under PEM Water Electrolysis Conditions. Int. J. Hydrogen Energy. 36(17): 10527–10540. Doi: 10.1016/j.ijhydene.2011.05.127.
A. U. Yakubu et al. 2024. A Comprehensive Review of Primary Cooling Techniques and Thermal Management Strategies for Polymer Electrolyte Membrane Fuel Cells PEMFC. Heliyon. 10(19). Doi: 10.1016/j.heliyon.2024.e38556.
C. A. Linkous, H. R. Anderson, R. W. Kopitzke, and G. L. Nelson. 1998. Development of New Proton Exchange Membrane Electrolytes for Water Electrolysis at Higher Temperatures. Int. J. Hydrogen Energy. 23(7): 525–529. Doi: 10.1016/s0360-3199(97)00113-4.
Y. Li, X. Sun, and Y. Feng. 2017. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells. ChemSusChem. 10(10): 2135–2139. Doi: 10.1002/cssc.201700228.
Y. Li, Y. Feng, X. Sun, and Y. He. 2017. A Sodium-Ion-Conducting Direct Formate Fuel Cell: Generating Electricity and Producing Base. Angew. Chemie - Int. Ed. 56(21): 5734–5737. Doi: 10.1002/anie.201701816.
A. Collier, H. Wang, X. Zi Yuan, J. Zhang, and D. P. Wilkinson. 2006. Degradation of Polymer Electrolyte Membranes. Int. J. Hydrogen Energy. 31(13): 1838–1854. Doi: 10.1016/j.ijhydene.2006.05.006.
A. Pozio, R. F. Silva, M. De Francesco, and L. Giorgi. 2003. Nafion Degradation in PEFCs from End Plate Iron Contamination. Electrochim. Acta. 48(11): 1543–1549. Doi: 10.1016/S0013-4686(03)00026-4.
E. Endoh, S. Terazono, H. Widjaja, and Y. Takimoto. 2004. Degradation Study of MEA for PEMFCs under Low Humidity Conditions. Electrochem. Solid-State Lett. 7(7): A209. Doi: 10.1149/1.1739314.
J. Yu, T. Matsuura, Y. Yoshikawa, M. N. Islam, and M. Hori. 2005. In Situ Analysis of Performance Degradation of a PEMFC under Nonsaturated Humidification. Electrochem. Solid-State Lett. 8(3): A156. Doi: 10.1149/1.1854781.
J. Yu, T. Matsuura, Y. Yoshikawa, M. N. Islam, and M. Hori. 2005. Lifetime Behavior of a PEM Fuel Cell with Low Humidification of Feed Stream. Phys. Chem. Chem. Phys. 7(2): 373–378. Doi: 10.1039/B412600A.
S. D. Knights, K. M. Colbow, J. St-Pierre, and D. P. Wilkinson. 2004. Aging Mechanisms and Lifetime of PEFC and DMFC. J. Power Sources. 127(1–2): 127–134. Doi: 10.1016/j.jpowsour.2003.09.033.
M. S. Wilson, F. H. Garzon, K. E. Sickafus, and S. Gottesfeld. 1993. Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 140(10): 2872–2877. Doi: 10.1149/1.2220925.
K. Kowalczyk, T. Spychaj, and G. Krala. 2015. High-Build Alkyd Urethane Coating Materials With a Partially Solvolyzed Waste Polyurethane Foam. Polym. Eng. Sci. 55(9): 2174–2183. Doi: 10.1002/pen.
W. M. Yan, S. C. Mei, C. Y. Soong, Z. S. Liu, and D. Song. 2006. Experimental Study on the Performance of PEM Fuel Cells with Interdigitated Flow Channels. J. Power Sources. 160(1): 116–122. Doi: 10.1016/j.jpowsour.2006.01.063.
J. Wu, B. Yi, M. Hou, Z. Hou, and H. Zhang. 2004. Influence of Catalyst Layer Structure on the Current Distribution of PEMFCs. Electrochem. Solid-State Lett. 7(6): A151. Doi: 10.1149/1.1718195.
J. Cargnelli and B. Evers. 2013. Recent Advances in PEM Water Electrolysis. Int. Work. Durab. Degrad. Issues PEM Electrolysis Cells its Components.
U. Babic, M. Suermann, F. N. Büchi, L. Gubler, and T. J. Schmidt. 2017. Critical Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development. J. Electrochem. Soc. 164(4): F387–F399. Doi: 10.1149/2.1441704jes.
K. Vivekananda, G. N. Arka, and S. K. Sahoo. 2014. Finite Element Analysis and Process Parameters Optimization of Ultrasonic Vibration Assisted Turning (UVT). Procedia Mater. Sci. 6(6): 1906–1914. Doi: 10.1016/j.mspro.2014.07.223.
V. A. Sethuraman, J. W. Weidner, A. T. Haug, S. Motupally, and L. V. Protsailo. 2008. Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode. J. Electrochem. Soc. 155(1): B50. Doi: 10.1149/1.2801980.
M. Watanabe, M. Tomikawa, and S. Motoo. 1985. Preparation of a High Performance Gas Diffusion Electrode. J. Electroanal. Chem. Interfacial Electrochem. 182(1): 193–196.
S. Park, J. W. Lee, and B. N. Popov. 2006. Effect of Carbon Loading in Microporous Layer on PEM Fuel Cell Performance. J. Power Sources. 163(1): 357–363. Doi: 10.1016/j.jpowsour.2006.09.020.
G. H. Yoon et al. 2009. Novel hydrophobic Coating Process for Gas Diffusion Layer in PEMFCs. J. Electroceramics. 23(2–4): 110–115. Doi: 10.1007/s10832-007-9321-1.
Z. Qi and A. Kaufman. 2002. Improvement of Water Management by a Microporous Sublayer for PEM Fuel Cells. J. Power Sources. 109(1): 38–46. Doi: 10.1016/S0378-7753(02)00058-7.
S. Kundu, K. Karan, M. Fowler, L. C. Simon, B. Peppley, and E. Halliop. 2008. Influence of Micro-porous Layer and Operating Conditions on the Fluoride Release Rate and Degradation of PEMFC Membrane Electrode Assemblies. J. Power Sources. 179(2): 693–699. Doi: 10.1016/j.jpowsour.2007.11.117.
S. R. Dhanushkodi, F. Capitanio, T. Biggs, and W. Mérida. 2015. Understanding Flexural, Mechanical and Physico-chemical Properties of Gas Diffusion Layers for Polymer Membrane Fuel Cell and Electrolyzer Systems. Int. J. Hydrogen Energy. 40(46): 16846–16859. Doi: 10.1016/j.ijhydene.2015.07.033.
V. Radhakrishnan and P. Haridoss. 2010. Effect of Cyclic Compression on Structure and Properties of a Gas Diffusion Layer used in PEM fuel cells. Int. J. Hydrogen Energy. 35(20): 11107–11118. Doi: 10.1016/j.ijhydene.2010.07.009.
A. Bazylak, D. Sinton, Z. S. Liu, and N. Djilali. 2007. Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers. J. Power Sources. 163(2): 784–792. Doi: 10.1016/j.jpowsour.2006.09.045.
Y. H. Lai, P. A. Rapaport, C. Ji, and V. Kumar. 2008. Channel Intrusion of Gas Diffusion Media and the Effect on Fuel Cell Performance. J. Power Sources. 184(1): 120–128. Doi: 10.1016/j.jpowsour.2007.12.065.
C. Lee and W. Mérida. 2007. Gas Diffusion Layer Durability under Steady-state and Freezing Conditions. J. Power Sources. 164(1): 141–153. Doi: 10.1016/j.jpowsour.2006.09.092.
Q. Yan, H. Toghiani, Y. W. Lee, K. Liang, and H. Causey. 2006. Effect of Sub-freezing Temperatures on a PEM Fuel Cell Performance, Startup and Fuel Cell Components. J. Power Sources. 160(2): 1242–1250. Doi: 10.1016/j.jpowsour.2006.02.075.
S.-Y. Lee et al. 2010. Performance Degradation and Microstructure Changes in Freeze-thaw Cycling for PEMFC MEAs with Various Initial Microstructures. Int. J. Hydrogen Energy. 35(23): 12888–12896. Doi: 10.1016/j.ijhydene.2010.08.070.
J. Mishler, Y. Wang, R. Lujan, R. Mukundan, and R. L. Borup. 2013. An Experimental Study of Polymer Electrolyte Fuel Cell Operation at Sub-Freezing Temperatures. J. Electrochem. Soc. 160(6): F514–F521. Doi: 10.1149/2.051306jes.
S. Latorrata, P. G. Stampino, C. Cristiani, and G. Dotelli. 2015. Development of an Optimal Gas Diffusion Medium for Polymer Electrolyte Membrane Fuel Cells and Assessment of Its Degradation Mechani. Int. J. Hydrogen Energy. 40(42): 14596–14608. Doi: 10.1016/j.ijhydene.2015.05.100.
J. H. Chun, D. H. Jo, S. G. Kim, S. H. Park, C. H. Lee, and S. H. Kim. 2012. Improvement of the Mechanical Durability of Micro Porous Layer in a Proton Exchange Membrane Fuel Cell by Eimination of Surface Cracks. Renew. Energy. 48: 35–41. Doi: 10.1016/j.renene.2012.04.011.
R. Borup, J. Davey, D. Wood, F. Garzon, and M. Inbody. 2005. VII.I.3 PEM Fuel Cell Durability.
J. E. Owejan, P. T. Yu, and R. Makharia. 2007. Mitigation of Carbon Corrosion in Microporous Layers in PEM Fuel Cells,” ECS Trans. 11(1): 1049–1057. Doi: 10.1149/ma2007-02/9/593.
S. Zhang et al. 2009. A Review of Accelerated Stress Tests of MEA durability in PEM Fuel Cells. Int. J. Hydrogen Energy. 34(1): 388–404. Doi: 10.1016/j.ijhydene.2008.10.012.
J. Wu et al. 2008. A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies. J. Power Sources. 184(1): 104–119. Doi: 10.1016/j.jpowsour.2008.06.006.
R. L. Borup, J. R. Davey, F. H. Garzon, D. L. Wood, and M. A. Inbody. 2006. PEM Fuel Cell Electrocatalyst Durability Measurements. J. Power Sources.. 163(1): 76–81. Doi: 10.1016/j.jpowsour.2006.03.009.
S. Ye, M. Hall, H. Cao, and P. He. 2006. Degradation Resistant Cathodes in Polymer Electrolyte Membrane Fuel Cells. ECS Trans. 3(1): 657–666. Doi: 10.1149/1.2356186.
C. He, S. Desai, G. Brown, and S. Bollepalli. 2005. PEM Fuel Cell Catalysts: Cost, Performance, and Durability. Electrochem. Soc. Interface. 41–44.
S. J. C. Cleghorn et al. 2006. A Polymer Electrolyte Fuel Cell Life Test: 3 Years of Continuous Operation. J. Power Sources. 158(1): 446–454. Doi: 10.1016/j.jpowsour.2005.09.062.
A. Husar, M. Serra, and C. Kunusch. 2007. Description of Gasket Failure in a 7 Cell PEMFC stack. J. Power Sources. 169(1): 85–91. Doi: 10.1016/j.jpowsour.2007.01.078.
Y. Al-okbi, M. J. Jweeg, M. A. Atiya, and R. Al-Dujele. 2024. Design, Analysis and Development of a Proton Exchange Membrane in Fuel Cell. J. Eng. Res. Doi: 10.1016/j.jer.2024.07.019.
D. Yang, J. Ma, Q. Zhang, B. Li, P. Ming, and C. Zhang. 2020. Accelerated Test of Silicone Rubbers Exposing to PEMFC Environment. Prog. Nat. Sci. Mater. Int. 30(6): 882–889. Doi: 10.1016/j.pnsc.2020.10.008.
M. Schulze, T. Knöri, A. Schneider, and E. Gülzow. 2004. Degradation of Sealings for PEFC Test Cells during Fuel Cell Operation. J. Power Sources. 127(1–2): 222–229. Doi: 10.1016/j.jpowsour.2003.09.017.
J. Park, H. Oh, T. Ha, Y. Il, and K. Min. 2015. A Review of the Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells : Durability and Degradation. Appl. Energy. 155: 866–880. Doi: 10.1016/j.apenergy.2015.06.068.
C.-Y. Liu, L.-H. Hu, and C.-C. Sung. 2012. Micro-protective Layer for lifetime Extension of solid Polymer Electrolyte Water Electrolysis. J. Power Sources. 207: 81–85. Doi: 10.1016/j.jpowsour.2012.01.045.
S. Oldewurtel, A. Wagner, C. Imdahl, S. Zellmer, and K. Dröder. 2024. ScienceDirect Disassembly Technologies for PEMFC Stacks in Heavy-duty Applications. 127: 218–223.
A. Arvay et al. 2012. Characterization Techniques for Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells - A Review. J. Power Sources. 213: 317–337. Doi: 10.1016/j.jpowsour.2012.04.026.
C. M. Branco, S. Sharma, M. M. De Camargo Forte, and R. Steinberger-Wilckens. 2016. New Approaches Towards Novel Composite and Multilayer Membranes for Intermediate Temperature-Polymer Electrolyte Fuel Cells and Direct Methanol Fuel Cells. J. Power Sources. 316: 139–159. Doi: 10.1016/j.jpowsour.2016.03.052.
L. Zhang, S. R. Chae, Z. Hendren, J. S. Park, and M. R. Wiesner. 2012. Recent Advances in Proton Exchange Membranes for Fuel Cell Applications. Chem. Eng. J. 204–205: 87–97. Doi: 10.1016/j.cej.2012.07.103.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.













