Evaluation of Lightning Induced Voltage due to the Effect of Design Parameters on Medium Voltage Distribution Line

Authors

  • N. Rameli Centre for Electromagnetic and Lightning Protection Research (CELP), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • M. Z. A. Ab Kadir Centre for Electromagnetic and Lightning Protection Research (CELP), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • M. Izadi Centre for Electromagnetic and Lightning Protection Research (CELP), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • C. Gomes Centre for Electromagnetic and Lightning Protection Research (CELP), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • J. Jasni Centre for Electromagnetic and Lightning Protection Research (CELP), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v64.2118

Keywords:

Lightning, induced overvoltage, striking distance, vertical lightning channel, inclined lightning channel.

Abstract

This paper investigates the effect of design parameters on the induced voltages on a distribution power line. This investigation is based on perfect ground conductivity, single stroke lightning and lightning without branches. The design of the parameters includes, d, the striking distance of the lightning, h, the height of the conductor, and r, the diameter of the conductor, all of which are elements that produce the variations in the induced voltage on a distribution power line with respect to a vertical or an inclined lightning channel. Thus, the outcome of this investigation can act as a guide for utility companies or other power engineers in order to plan an appropriate protection scheme for a distribution power line.

References

Cooray. V. 2010. The lightning Flash. London: The Institution of Engineering and Technology. 127–223.

Rakov. V. A and M. A. Uman. 2003. Lightning Physics and Effects. U.K.: Cambridge University Press. 108–190.

Chowdhuri, P., J. G. Anderson, W. A. Chisholm, T. E. Field, M. Ishii, J. A. Martinez, M. B. Marz, J. McDaniel, T. R. McDermott, A. M. Mousa, T. Narita, D. K. Nichols, T. A. Short. 2005. Parameters of Lightning Strokes: A Review. IEEE Transactions on Power Delivery. 20(1).

Interim Report on the Performance of the Electricity Supply Services in Malaysia for the First Half Year of 2010.

Rakov, V. A. 2010. Lightning Parameters for Engineering Applications (Keynote Speech). Asia Pacific International Symposium on Electromagnetic Compatibility.

Rakov, V. A. 2006. Lightning: Phenomenology and Parameters Important for EMC. CEEM’2006/Dalian. 3A1–01 283.

Ariff, H.M. 2009. MSc thesis: Insulation Coordination Studies on HV Substations.

Abd Rahman, N. A. 2008. TNB Research: Study on Lightning Performance Improvement of the 33kV Tanjung Batu-Rompin Overhead Distribution Line.

Nucci, C. A. 2007. Lightning-Induced Voltages on Distribution Systems: Influence of Ground Resistivity and System Topology. Journal of Lightning Research. 1: 148–157.

Kannu, P. D., and M. J. Thomas. 2005. Lightning Induced Voltages on Multiconductor Power Distribution Line. IEEE Proc.-Gener. Transm. Distrib. 152(6).

Ab Kadir, M. Z. A., Ariff. H. M., and Azmi. A. M. 2008. Modelling 132 kV Substation for Surge Arrester Studies. International Journal of Emerging Electric Power Systems. 9(5).

Barker, P. P., T. A. Short., A. R. E-Berard and J. P. Berlandis.1996. Induced Voltage Measurements on an Experimental Distribution Line during Nearby Rocket Triggered Lightning Flashes. IEEE Transactions on Power Delivery. 11(2).

Ab Kadir, M. Z. A., M. H. Mohamad Ariff., R. Mesron., and M. T. Salahuddin. 2008. Substation System Simulation Models for Transformer Risk Assessment Analysis, European Journal of Scientific Research. 23 (1): 141–148.

Razzak, S. M. A., M. M. Ali., M. Z. I. Sarkar., and H. Ahmad. 2004. Lightning Induced Over Voltages on Overhead Distribution Lines Including Lossy Ground Effects. 3rd International Conference on Electrical & Computer Engineering (ICECE).

Kannu, P. D., and M. Joy Thomas. 2003. Lightning Induced Voltages on Overhead Conductors at Different Heights, IEEE Bologna Power Tech Conference.

Schoene, J. 2002. MSC: Analysis of Parameters of Rocket-Triggered Lightning Measured During the 1999 and 2000 Camp Blanding Experiment and Modeling of Electric and Magnetic Field Derivatives Using the Transmission Line Model. University of Florida.

Hill, R. 1968. Analysis of Irregular Paths of Lightning Channels. Journal of Geophysical Research. 73: 1897–1906.

Hill, R. 1969. Electromagnetic Radiation from Erratic Paths of Lightning Strokes. Journal of Geophysical Research. 74: 1922–1929.

Sakakibra, A. 1989. Calculation of Induced Voltages on Overhead Lines Caused by Inclined Lightning Strokes. IEEE Transactions on Power Delivery. 4(1).

Moini, R., S. H. H. Sadeghi., B. Kordi and F. Rachidi. 2006. An Antenna-Theory Approach for Modelling Inclined Lightning Return Stroke Channels. Electric Power System Research. 945–952.

Andreotti, A., U. D. Martinis., C. Petrarc., V. A. Rakov., and L.Verolino. 2011. Lightning Electromagnetic Fields and Induced Voltages: Influence of Channel Tortuosity. General Assembly and Scientific Symposium, 2011 XXXth URSI. 1-4.

Abd. Rahman, N. A., N. Abdullah and M. F. Ariffin. 2010. Influence of Earthing Resistance on the Performance of Distribution Line Lightning Arrester. Asia-Pacific International Symposium on Electromagnetic Compatibility.

Souza, R. P., I. J. S. Lopes., and J. O. S. Paulino. 2010. Influence of Electro geometric Model and Statistical Current Distribution in Distribution Lines Indirect Lightning Performance Estimation Considering the Ground Resistivity. IEEE/PES T&D.

IEEE W. G. 2004. 1410 TM IEEE Guide for Improving the Lightning Performance of Electric power Overhead Distribution Lines. IEEE Power Engineering Society.

Datasheet Power Line Cable. Tenaga Cable Industries Sdn Bhd

Datasheet Power Line Cable. Universal Cable (M) Berhad

Uman, M. 2001. The lightning Discharge: Dover Pubs

Gayen, A. 2006. A Simplified Approach to Understanding of The Phenomenon of Cloud to Ground Lightning and Modeling of Return Stroke Current. Electromagnetic Interference and Compatibility (INCEMIC), Proceedings of the 9th International Conference. 358–362.

Nucci, C. A., G. Diendorfer., M. A. Uman., F. Rachidi., M. Ianoz., and C. Mazzetti. 1990. Lightning Return-Stroke Models with Channel-Base Specified Current: A Review and Comparison. Journal of Geophysical Research. 95: 20, 395–20, 408.

Nucci, C. A. 1995. Lightning-Induced Voltages on Overhead Power Lines. Part I: Return Stroke Current Models with Specified Channel-Base Current for the Evaluation of the Return Stroke Electromagnetic Fields. Electra. 161: 75–102.

Izadi, M., M. Z. A. Ab.Kadir, M. Hajikhani, M. 2013. Evaluation of Electromagnetic Fields Due To Inclined Lightning Channel In Presence of Ground Reflection. Progress In Electromagnetic Research (PIER). 135: 677–694.

Izadi, M., M. Z. A. Ab. Kadir, M. Hajikhani, M. 2013. The Analytical Field Expressions Associated with Lightning Channel in Presence of Ground Reflection at Striking Point. International Journal of Applied Electromagnetics and Mechanics. 42: 303–317,

Izadi, M., M. Z. A. Ab. Kadir, Gomes, C., Ahmad, W. 2011. Numerical Expressions in Time Domain for Electromagnetic Fields Due to Lightning Channels. International Journal of Applied Electromagnetics and Mechanics. 37: 275–289.

Izadi, M., M. Z. A. Ab. Kadir, Gomes. C. Ahmad, W., 2010. An Analytical Second-FDTD Method For Evaluation of Electric and Magnetic Fields at Intermediate Distances From Lightning Channel. Progress In Electromagnetic Research (PIER). 110: 329–352.

Izadi, M., M. Z. A. Ab. Kadir. 2010. New Algorithm for Evaluation of Electric Fields due to Indirect Lightning Strike. CMES: Computer Modeling in Engineering & Sciences. 6: 1–12.

Rakov, V., and M. Uman. 1998. Review and Evaluation of Lightning Return Stroke Models Including Some Aspects of Their Application. IEEE Transactions on Electromagnetic Compatibility. 40: 403–426.

Djalel, D., H. Ali., and C.Fayçal. 2007. The Return-Stroke of Lightning Current, Source of Electromagnetic Fields (Study, Analysis and Modelling). American Journal of Applied Sciences. 4(1): 42–48.

Izadi, M., M. Z. A Ab Kadir., C. Gomes. and W.F. Wan Ahmad. 2011. Evaluation of the Electromagnetic fields due to Lightning Channel with Respect to the Striking Angle. International Review of Electrical Engineering. 6(2).

Sadiku, M. N. O. 2007. Elements of Electromagnetic. Fourth Edition. New York: Oxford University Press.

Izadi, M., M. Z. A Ab Kadir., C. Gomes., and W. F. Wan Ahmad. 2012. Analytical Expressions for Electromagnetic Fields Associated with the Inclined Lightning Channels in the Time Domain. Electric Power Components and Systems. 414–438.

Nucci, C. A. 1995. Lightning-Induced Voltages on Overhead Power Lines. Part II: Coupling Models for Evaluation of Induced Voltages. Electra.162: 123–142.

Djalel, D., H. Ali., and C. Benachiba. 2007. Coupling Phenomenon between the lightning and High Voltage Networks. Proceedings of World Academy of Science, Engineering and Technology. 21.

Nucci, C. A., F. Rachidi., M. Ianoz.,and C. Mazzetti. 1995. Comparison of two Coupling Models for Lightning Induced Overvoltage Calculation. IEEE Transaction on Power Delivery. 10(1).

Izadi, M., M. Z. A. Ab.Kadir., and F. A. Abd Rahman. 2010. On comparison between Rusck and Taylor Coupling Models for Evaluation of Lightning Induced Voltage on the Power Lines. Asia Pacific Symposium of Applied Electromagnetic and Mechanism (APSAEM2010).

Rameli, N., M. Z. A Ab Kadir., M. Izadi., C. Gomes., and J. Jasni. 2012. On the Influence of Inclined Lightning Channel on Lightning Induced Voltage Evaluation. International Conference on Lightning Protection (ICLP).

Izadi, M., M. Z. A. Ab. Kadir, M. Hajikhani, M. 2013.Evaluation of Electromagnetic Fields Due to Inclined Lightning Channel In Presence of Ground Reflection. Progress In Electromagnetic Research (PIER). 135: 677–694.

Izadi, M., M. Z. A. Ab. Kadir, M. Hajikhani, M. 2013. The Analytical Field Expressions Associated with Lightning Channel in Presence of Ground Reflection at Striking Point. ,International Journal of Applied Electromagnetics and Mechanics. 42: 303–317.

Izadi, M., M. Z. A. Ab. Kadir, Gomes. C., Ahmad, W. 2011. Numerical Expressions in Time Domain for Electromagnetic Fields Due to Lightning Channels. International Journal of Applied Electromagnetics and Mechanics. 37: 275–289.

Izadi, M., M. Z. A. Ab. Kadir, Gomes. C., Ahmad, W. 2010. An Analytical Second-FDTD Method For Evaluation of Electric and Magnetic Fields at Intermediate Distances From Lightning Channel. Progress In Electromagnetic Research (PIER). 110: 329–352.

Rameli, N., M. Z. A. Ab Kadir., M. Izadi. 2013. Evaluation of Lightning Induced Over-Voltage Due to Variations of Channel Angle. IEEE conference (Peoco 2013), Malaysia.

Izadi, M., M. Z. A. Ab. Kadir. 2010. New Algorithm for Evaluation of Electric Fields due to Indirect Lightning Strike. CMES: Computer Modeling in Engineering & Sciences. 67: 1–12.

Izadi, M., M. Z. A. Ab. Kadir, M. Hajikhani, M. 2013. On the Behavior of Lightning Induced Voltage. IEEE conference (Peoco 2013), Malaysia.

Downloads

Published

2013-09-15

Issue

Section

Science and Engineering

How to Cite

Evaluation of Lightning Induced Voltage due to the Effect of Design Parameters on Medium Voltage Distribution Line. (2013). Jurnal Teknologi, 64(4). https://doi.org/10.11113/jt.v64.2118