INFLUENCE OF CRUSHED BRICK COLUMNS ON GEOTECHNICAL PROPERTIES OF EXPANSIVE SOIL

Authors

  • Ng Jun Shen Department of Civil Engineering, Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak 26300 Kuantan, Pahang Darul Makmur, Malaysia https://orcid.org/0000-0002-6113-1237
  • Muzamir Hasan Department of Civil Engineering, Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak 26300 Kuantan, Pahang Darul Makmur, Malaysia https://orcid.org/0000-0002-2700-236X
  • Low Yong Ler Department of Civil Engineering, Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak 26300 Kuantan, Pahang Darul Makmur, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.21191

Keywords:

Expansive clay, brick, shear strength, ground improvement, foundation

Abstract

Utilization of crushed brick which is a common industrial material that is potentially wasted during the construction process in ground improvement can relieve its detrimental effects on the environment thereby reducing the waste disposal challenges. Hence, this study proposes its utilization as reinforcement to the soft clay soil. The tests mainly focused on the particle size distribution (PSD), specific gravity, Atterberg limit, proctor analysis as well as the shear strength parameters from Unconfined Compression Test (UCT). Coherently, the vibro-replacement method was deployed within a small-scale laboratory approach as a prediction model for the construction of a group of crushed brick columns. The column design was mainly classified into partially penetrated columns which have 60 mm and 80 mm height, and fully penetrated columns with 100 mm height. The mass of crushed brick used was approximately 1.07% - 4.56% of its total mass of specimen which produces the shear strength improvement rate from 11.00% - 18.55%. From the obtained results, the use of fully penetrated 100 mm diameter columns enhanced the undrained shear strength of kaolin clay to the maximum value, 26.20kPa or 18.55% as compared to the control sample with no reinforcement, which reduced the soil settlement and promoted the use of sustainable material in ground improvement.

References

K. M. N. S. Wani and B. A. Mir. 2020. Microbial Geo-technology in Ground Improvement Techniques: A Comprehensive Review. Innov. Infrastruct. Solut. 5(3). Doi: 10.1007/s41062-020-00335-6.

M. U. Safdar et al. 2022. Towards the Development of Sustainable Ground Improvement Techniques—Biocementation Study of an Organic Soil. Circ. Econ. Sustain. 2(4): 1589-1614. Doi: 10.1007/s43615-021-00071-8.

G. El Mountassir, A. Schellenger, E. Salifu, and R. J. Lunn. 2020. Engineering Fungal Networks for Ground Improvement. Resilient Mater. 4 Life Conf. Cardiff. 63-68.

E. Dhianty and I. B. Mochtar. 2018. Method of Removing Secondary Compression on Clay using Preloading. MATEC Web Conf. 195: 1-10. Doi: 10.1051/matecconf/201819503006.

N. Yoobanpot, P. Jamsawang, and S. Horpibulsuk. 2017. Strength Behavior and Microstructural Characteristics of Soft Clay Stabilized with Cement Kiln Dust and Fly Ash Residue. Appl. Clay Sci. 141: 146-156. Doi: 10.1016/j.clay.2017.02.028.

Q. A. Aljanabi, Z. Chik, and A. Kasa. 2013. Construction of a New Highway Embankment on the Soft Clay Soil Treatment by Stone Columns in Malaysia. J. Eng. Sci. Technol. 8(4): 448-456.

R. Amini. 2015. Physical Modelling of Vibro Stone Column using Recycled Aggregates. Ph.D. Thesis. University of Birmingham.

S. Amena. 2021. Experimental Study on the Effect of Plastic Waste Strips and Waste Brick Powder on Strength Parameters of Expansive Soils. Heliyon. 7(11): e08278. Doi: 10.1016/j.heliyon.2021.e08278.

J. Zhang, C. Li, L. Ding, and J. Li. 2021. Performance Evaluation of Cement Stabilized Recycled Mixture with Recycled Concrete Aggregate and Crushed Brick. Constr. Build. Mater. 296: 123596. Doi: 10.1016/j.conbuildmat.2021.123596.

P. Kasinikota and D. D. Tripura. 2021. Evaluation of Compressed Stabilized Earth Block Properties using Crushed Brick Waste. Constr. Build. Mater. 280: 122520. Doi: 10.1016/j.conbuildmat.2021.122520.

W. Safi and S. Singh. 2021. Efficient & Effective Improvement and Stabilization of Clay Soil with Waste Materials. Mater. Today Proc. 51: 947-955. Doi: 10.1016/j.matpr.2021.06.333.

S. L. Kh. M. and A. Omran. 2009. Sustainable Development and Construction Industry in Malaysia. Econ. Soc. Polit. Cult. Probl. Soc. 10: 76-85.

E. P. U. EPU. 2013. Tenth Malaysia Plan. J. Chem. Inf. Model. 53(9): 1689-1699.

Economic Planning Unit. 2015. Eleventh Malaysia Plan : Anchoring Growth on People. Ranc. Malaysia Kesebelas (Eleventh Malaysia Plan) 2016-2020. 1-372. [Online]. http://rmk11.epu.gov.my/book/eng/Elevent-Malaysia-Plan/RMKe-11%5CnBook.pdf.

N. Y. Zainun, I. A. Rahman, and R. A. Rothman. 2016. Mapping of Construction Waste Illegal Dumping Using Geographical Information System (GIS). IOP Conf. Ser. Mater. Sci. Eng. 160(1). Doi: 10.1088/1757-899X/160/1/012049.

S. Hafizan Hassan, H. Abdul Aziz, I. Johari, and M. N. Adlan. 2015. Quantification of Concrete Waste Generated in Housing Construction Sites via Site Sampling: Development of a Multiple Linear Regression Model. Appl. Mech. Mater. 802: 676-681. Doi: 10.4028/www.scientific.net/amm.802.676.

A. M. Joshi, S. M. Basutkar, M. I. Ahmed, M. Keshava, R. Seshagiri Rao, and S. J. Kaup. 2019. Performance of Stabilized Adobe Blocks Prepared using Construction and Demolition Waste. J. Build. Pathol. Rehabil. 4(1). Doi: 10.1007/s41024-019-0052-x.

D. Damoerin, W. A. Prakoso, and Y. Utami. 2015. Improving shear Strength of Clay by using Cement Column Reinforcement under Consolidated Undrained Test. Int. J. Technol. 6(4): 709-717. Doi: 10.14716/ijtech.v6i4.1206.

D. Sree, A. R. Ajitha, and Y. S. Evangeline. 2011. Study on the Shrinkage, Swelling and Strength Characteristics of Clay Soils Under Different Environmental Conditions. 2-5.

A. N. Zainuddin, S. N. Jamal, M. Mukri, N. A. Che Azmi, and D. Che Lat. 2015. Study of Nano Koalinite as Additives in Kaolinite Clay to Develop New Clay Liner Design. Int. J. Appl. Eng. Res. 10(95).

S. Mousavi and L. S. Wong. 2015. Mechanical Behavior of Compacted and Stabilized Clay with Kaolin and Cement. Jordan J. Civ. Eng. 9(4): 477-486. Doi: 10.14525/jjce.9.4.3120.

A. Das and D. K. Soni. 2015. Variation in the Properties of Kaolinite By Varying the Percenatge of Ground Granulated Blast Furnace Slag (Ggbs) and Lime Added in Kaolinite Variation in the Properties of Kaolinite by Varying the Percenatge of Ground Granulated Blast Furnace Slag (Gg). Int. J. Electron. Electr. Comput. Syst. 4(August): 260-266.

M. Hasan, N. Pangee, and N. A. Husaini. 2016. Strength of Soft Clay Reinforced with Square and Triangular Pattern Encapsulated Bottom Ash Columns. Second Int. Conf. Sci. Eng. Environ. November: 21-23. [Online]. internal-pdf://214.47.198.8/Strength Of Soft Clay Reinforced With square a.pdf.

Elhusna, A. S. Wahyuni, and A. Gunawan. 2014. Performance of Clay Brick of Bengkulu. Procedia Eng. 95: 504–509. Doi: 10.1016/j.proeng.2014.12.211.

N. Phonphuak, S. Kanyakam, and P. Chindaprasirt. 2016. Utilization of Waste Glass to Enhance Physical-mechanical Properties of Fired Clay Brick. J. Clean. Prod. 112: 3057-3062. Doi: 10.1016/j.jclepro.2015.10.084.

N. J. Shen, M. Hasan, N. Amina, and A. Hashim. 2023. The Influence of Bottom Ash Column in the Geotechnical Properties Enhancement of Soft Clay Soil. International Journal for Multidisciplinary Research. 5(5): 1-13.

M. bin Hasan, N. binti Yusuf, N. A. binti Noor Shahrudeen, and A. M. H. Kassim. 2015. Strength of Soft Clay Reinforced with Group Crushed Polypropylene (PP) Columns. Electron. J. Geotech. Eng. 20(22): 12291-12308.

M. I. Hoque, M. Hasan, and N. J. Mim. 2023. Shear Strength of Soft Clay Reinforced With Single Encased Stone Dust Columns. J. Teknol. 85(5): 27-34. Doi: 10.11113/jurnalteknologi.v85.19879.

M. Hasan et al. 2021. Sustainable Ground Improvement Method using Encapsulated Polypropylene (PP) Column Reinforcement. IOP Conf. Ser. Earth Environ. Sci. 930(1). Doi: 10.1088/1755-1315/930/1/012016.

S. S. Najjar. 2013. A State-of-the-Art Review of Stone/Sand-Column Reinforced Clay Systems. Geotech. Geol. Eng. 31(2): 355-386. Doi: 10.1007/s10706-012-9603-5.

S. S. Najjar, S. Sadek, and T. Maakaroun. 2010. Effect of Sand Columns on the Undrained Load Response of Soft Clays. J. Geotech. Geoenvironmental Eng. 136(9): 1263-1277. Doi: 10.1061/(asce)gt.1943-5606.0000328.

J. G. Egbe, D. E. Ewa, S. E. Ubi, G. B. Ikwa, and O. O. Tumenayo. 2018. Application of Multilinear Regression Analysis in Modeling of Soil Properties for Geotechnical Civil Engineering Works in Calabar South. Niger. J. Technol. 36(4): 1059. Doi: 10.4314/njt.v36i4.10.

M. Bin Hasan, A. B. Marto, M. Hyodo, and A. M. Bin Makhtar. 2011. The Strength of Soft Clay Reinforced with Singular and Group Bottom Ash Columns. Electron. J. Geotech. Eng. 16(February): 1215-1227.

Downloads

Published

2024-06-02

Issue

Section

Science and Engineering

How to Cite

INFLUENCE OF CRUSHED BRICK COLUMNS ON GEOTECHNICAL PROPERTIES OF EXPANSIVE SOIL. (2024). Jurnal Teknologi, 86(4), 95-104. https://doi.org/10.11113/jurnalteknologi.v86.21191