Design Consideration for Front-End System in Ultrasonic Tomography

Authors

  • Nor Muzakkir Nor Ayob Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Jaysuman Pusppanathan Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ruzairi Abdul Rahim Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Hafiz Fazalul Rahiman Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
  • Fazlul Rahman Mohd Yunu Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
  • Salinda Buyamin Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Intan Maisarah Abd Rahim Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Yusri Md. Yunos Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v64.2132

Keywords:

Front-end system, process tomography, sensor jig, ultrasonic transducer

Abstract

The hardware development of the ultrasonic tomography comprises three main parts; the sensor unit, electronic measurement circuits combined with a data acquisition system and finally the display unit. The research done is focusing on the design considerations for the sensory unit which is also regarded as the front-end system. This part is an important concern for researchers in the field of ultrasonic, particularly for process tomography. Ultrasonic transducers are very sensitive piezo-mechanical component and as such its installation to complete the front-end system have to be properly configured. Many considerations and parameters that are well planned will promise significant impact on the sensor readings. Measurement errors can occur due to many aspects, thus this research aims to minimize such errors to be useful for further development in ultrasonic tomography system design.

References

G. Falcone, G. F. Hewitt, C. 2009. Alimonti, Multiphase Flow Metering. Elsevier.

D. Xie, W. Li, F. Wang, J. Zheng, Y. Zheng, G. Liang. 2007. A New Method for the Flowrate Measurement of Gas–Liquid Two-Phase Flow, IEEE Transactions on Instrumentation and Measurement. 56(4): 1495–1500

B. S. Hoyle. 1996. Process Tomography Using Ultrasonic Sensors. Measurement Science and Technology. 7(3): 272.

M. H. F. Rahiman. 2005. Non-invasive Imaging of Liquid/Gas Flow using Ultrasonic Transmission-mode Tomography. Master Dissertation.

N. Wei-Nyap, Development of Ultrasonic Tomography for Composition Determination of Water and Oil Flow. 2005. Master Dissertation. Universiti Teknologi Malaysia.

M. S. Saad. 2007. Concentration and Velocity Measurement of Flowing Objects using Optical and Ultrasonic Tomography. Master Dissertation. Universiti Teknologi Malaysia.

N. M. Nor Ayob, S. Yaacob, Z. Zakaria, M. H. F. Rahiman, R. A. Rahim, M. R. Manan. 2010. Improving Gas Component Detection of an Ultrasonic Tomography System for Monitoring Liquid/Gas Flow. In: 6th International Colloquium on Signal Processing and Its Applications (CSPA 2010). 278–282.

V. A. A.-O. Edward, L. Paul, Suzanne, M. Kresta. 2004. Handbook of Industrial Mixing. Science and Practice. John Wiley & Sons, Inc.

G. Steiner, F. Podd. 2006. A Non-Invasive And Non-Intrusive Ultrasonic Transducer Array For Process Tomography. In:XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development. Rio de Janeiro, Brazil.

R. A. Rahim, M. H. F. Rahiman, K. S. Chan, S. W. Nawawi. 2007. Non-Invasive Imaging of Liquid/gas Flow Using Ultrasonic Transmission-mode Tomography. Sensors and Actuators A: Physical. 135(2): 337–345.

M. H. F. Rahiman, R. A. Rahim, M. Tajjudin. 2006. Ultrasonic Transmission-Mode Tomography Imaging for Liquid/Gas Two-Phase Flow. Sensors Journal, IEEE. 6(6): 1706–1715.

M. H. F. Rahiman, R. A. Rahim, N. M. N. Ayob. 2010. The Front-End Hardware Design Issue in Ultrasonic Tomography. Sensors Journal, IEEE. 10(7): 1276–1281.

M. L. Sanderson, H. Yeung. 2002. Guidelines for the Use of Ultrasonic Non-Invasive Metering Techniques. Flow Measurement and Instrumentation. 13(4) 125–142.

L. Schmerr, J. S. Song. 2007. Ultrasonic Nondestructive Evaluation Systems: Models and Measurements. Springer.

N. M. Nor Ayob, M. H. F. Rahiman, Z. Zakaria, S. Yaacob, R. A. Rahim. 2010. Detection of Small Gas Bubble Using Ultrasonic Transmission-Mode Tomography System. In: IEEE Symposium on Industrial Electronics & Applications (ISIEA). 165–170.

R. Abdul Rahim. S. Z. Mohd. Muji (January 2013). Optical Tomography: Image Improvement using Mix Projection of Parallel and Fan Beam Mode. Measurement Journal (ISSN: 0263-2241) Elsevier Science. 46: 1970–1978.

Downloads

Published

2013-09-15

Issue

Section

Science and Engineering

How to Cite

Design Consideration for Front-End System in Ultrasonic Tomography. (2013). Jurnal Teknologi, 64(5). https://doi.org/10.11113/jt.v64.2132