OPTIMIZATION OF NEWLY FABRICATED LACCASE BIOSENSOR BASED ON SINGLE-WALLED CARBON NANOTUBE FOR TYRAMINE DETECTION
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.21424Keywords:
Laccase, screen-printed carbon electrode, single-walled carbon nanotube, carboxyl functionalized, tyramineAbstract
Tyramine (TYR), also identified as 4-(2-aminoethyl) phenol, is an organic compound. Its elevated presence indicates prolonged food storage, leading to spoilage and potentially impacting human well-being. To address this concern, a biosensor was designed on a single-walled carbon nanotube carboxyl-functionalized screen-printed carbon electrode (COOH-SWCNT-SPCE). Laccase (LAC)-based electrochemical biosensors were effectively created using a simple and innovative technique involving enzyme LAC being drop cast. Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), and Differential Pulse Voltammetry (DPV) were utilized to assess the properties and electrochemical behavior of the modified SPCEs. Under optimal experimental conditions, the LAC/COOH-SWCNT-SPCE biosensor exhibited favorable performance at scan rates of 50 mV s-1 (within the range of 10 to 500 mV s-1), pH 8.0 (ranging from 7.0 to 10.0), 4 µL enzyme LAC (varying from 2 to 10 µL), and 1.0 mg mL-1 SWCNTs (ranging from 0.2 to 3.0 mg mL-1). Deposition potential and time were set at 0.5 V. The modified SPCEs demonstrated effective usage for TYR measurement, achieving a Correlation Coefficient (R2) of 0.981 and a Limit of Detection (LOD) of 0.070 mM.
References
Al-Adhami, A. J. H., Bryjak, J., Greb-Markiewicz, B., & Peczyńska-Czoch, W. 2002. Immobilization of Wood-Rotting Fungi Laccases on Modified Cellulose and Acrylic Carriers. Process Biochemistry. 37(12): 1387-1394.
An, D., Chen, Z., Zheng, J., Chen, S., Wang, L., Huang, Z., & Weng, L. 2015. Determination of Biogenic Amines in Oysters by Capillary Electrophoresis Coupled with Electrochemiluminescence. Food Chemistry. 168: 1-6.
Apetrei, I. M., & Apetrei, C. 2015. The Biocomposite Screen-Printed Biosensor based on Immobilization of Tyrosinase onto the Carboxyl Functionalised Carbon Nanotube for Assaying Tyramine in Fish Products. Journal of Food Engineering. 149: 1-8.
Assis, D. C. S., Menezes, L. D. M., Silva, G. R., Caccioppoli, J., Santos, E. L. S., Heneine, L. G. D., Cançado, S. V. 2015. Bioactive Amines and Meat Quality of Broiler Chickens | Aminas Bioativas E Qualidade Da Carne De Frangos De Corte. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia. 67(6).
Azri, F. A., Sukor, R., Hajian, R., Yusof, N. A., Bakar, F. A., & Selamat, J. 2017. Modification Strategy of Screen-Printed Carbon Electrode with Functionalized Multi-Walled Carbon Nanotube and Chitosan Matrix for Biosensor Development. Asian Journal of Chemistry. 29(1): 31-36.
Cajthaml, T., Křesinová, Z., Svobodová, K., & Möder, M. 2009. Biodegradation of Endocrine-Disrupting Compounds and Suppression of Estrogenic Activity by Ligninolytic Fungi. Chemosphere. 75(6): 745-750.
Calvo-Pérez, A., Domínguez-Renedo, O., Alonso-Lomillo, M. A., & Arcos-Martínez, M. J. 2013. Disposable Horseradish Peroxidase Biosensors for the Selective Determination of Tyramine. Electroanalysis. 25(5): 1316-1322.
Camargo, J. R., Baccarin, M., Raymundo-Pereira, P. A., Campos, A. M., Oliveira, G. G., Fatibello-Filho, O., Janegitz, B. C. 2018. Electrochemical Biosensor Made with Tyrosinase Immobilized in a Matrix of Nanodiamonds and Potato Starch for Detecting Phenolic Compounds. Analytica Chimica Acta. 1034: 137-143.
Chakkarapani, L. D., & Brandl, M. 2020. Carbon Screen-Printed Electrode Coated with Poly (Toluidine Blue) as an Electrochemical Sensor for the Detection of Tyramine. Engineering Proceedings. 2(1): 51.
Chen, K., Zhang, Z. L., Liang, Y. M., & Liu, W. 2013. A Graphene-Based Electrochemical Sensor for Rapid Determination of Phenols in Water. Sensors (Switzerland). 13(5): 6204, 6216.
Chen, M., Zeng, G., Xu, P., Lai, C., & Tang, L. 2017. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials? Trends in Biochemical Sciences. 42(11): 914-930.
Daniel, D., dos Santos, V. B., Vidal, D. T. R., & do Lago, C. L. 2015. Determination of Biogenic Amines in Beer and Wine by Capillary Electrophoresis-Tandem Mass Spectrometry. Journal of Chromatography A. 1416: 121-128.
Du, J. F., Kim, Y. R., & Jeong, H. T. 2017. Flexible Polyethylene Terephthalate (PET) Electrodes based on Single-Walled Carbon Nanotubes (SWCNTs) for Supercapacitor Application. Composite Interfaces. 24(1): 99-109.
Guler, Z., & Sarac, A. S. 2016. Electrochemical Impedance and Spectroscopy Study of the EDC/NHS Activation of the Carboxyl Groups on Poly(ε-Caprolactone)/Poly(M-Anthranilic Acid) Nanofibers. Express Polymer Letters. 10(2): 96-110.
Hwang, J. H., Fox, D., Stanberry, J., Anagnostopoulos, V., Zhai, L., & Lee, W. H. 2021. Direct Mercury Detection in Landfill Leachate using a Novel Aunp-Biopolymer Carbon Screen-Printed Electrode Sensor. Micromachines. 12(6).
Jain, S. 2012. Development of an Antibody Functionalized Carbon Nanotube Biosensor for Foodborne Bacterial Pathogens. Journal of Biosensors & Bioelectronics. 01(S11).
Khan, M. Z. H., Liu, X., Zhu, J., Ma, F., Hu, W., & Liu, X. 2018. Electrochemical Detection of Tyramine with ITO/APTES/ErGO Electrode and its Application in Real Sample Analysis. Biosensors and Bioelectronics. 108: 76-81.
Lázaro, César A., Conte-Júnior, C. A., Cunha, F. L., Mársico, E. T., Mano, S. B., & Franco, R. M. 2013. Validation Of An HPLC Methodology For The Identification and Quantification of Biogenic Amines in Chicken Meat. Food Analytical Methods. 6(4):1024-1032.
Lázaro, César Aquiles, Conte-Júnior, C. A., Canto, A. C., Monteiro, M. L. G., Costa-Lima, B., Cruz, A. G. da, Franco, R. M. 2015. Biogenic Amines As Bacterial Quality Indicators In Different Poultry Meat Species. LWT - Food Science and Technology. 60(1): 15-21.
Liu, F., Piao, Y., Choi, K. S., & Seo, T. S. 2012. Fabrication of Free-Standing Graphene Composite Films as Electrochemical Biosensors. Carbon. 50(1): 123-133.
Muhammad, A., Yusof, N. A., Hajian, R., & Abdullah, J. 2016. Construction of an Electrochemical Sensor based on Carbon Nanotubes/Gold Nanoparticles for Trace Determination of Amoxicillin in Bovine Milk. Sensors (Switzerland). 16(1): 1-13.
Nunes, C. S., & Kunamneni, A. 2018. Laccases-Properties and Applications. Enzymes in Human and Animal Nutrition: Principles and Perspectives. London: Elsevier Inc.
Ordóñez, J. L., Troncoso, A. M., García-Parrilla, M. D. C., & Callejón, R. M. 2016. Recent Trends in the Determination of Biogenic Amines in Fermented Beverages – A Review. Analytica Chimica Acta. 939: 10-25.
Palmer, T., & Bonner, P. L. 2011. Biotechnological Applications of Enzymes. Enzymes. 356-376.
Rahimi-Mohseni, M., Raoof, J. B., Ojani, R., Aghajanzadeh, T. A., Bagheri Hashkavayi, A., Martinez, N. A., Naaz, I. 2018. Fabrication of a Novel Enzymatic Electrochemical Biosensor for Determination of Tyrosine in Some Food Samples. Materials. 12(7): 4391-4398.
Ren, L., Yan, D., & Zhong, W. 2012. Enhanced Enzyme Activity Through Electron Transfer Between Single-Walled Carbon Nanotubes And Horseradish Peroxidase. Carbon. 50(3): 1303-1310.
Reza, K. K., Ali, M. A., Srivastava, S., Agrawal, V. V., & Biradar, A. M. 2015. Tyrosinase Conjugated Reduced Graphene Oxide based Biointerface for Bisphenol a Sensor. Biosensors and Bioelectronics. 74: 644-651.
Sánchez-Paniagua López, M., Redondo-Gómez, E., & López-Ruiz, B. 2017. Electrochemical Enzyme Biosensors based on Calcium Phosphate Materials for Tyramine Detection in Food Samples. Talanta. 175(7): 209-216.
Tavares, A. P. M., Silva, C. G., Dražić, G., Silva, A. M. T., Loureiro, J. M., & Faria, J. L. 2015. Laccase Immobilization Over Multi-Walled Carbon Nanotubes: Kinetic, Thermodynamic and Stability Studies. Journal of Colloid and Interface Science. 454: 52-60.
Telsnig, D., Kalcher, K., Leitner, A., & Ortner, A. 2013. Design of an Amperometric Biosensor for the Determination of Biogenic Amines using Screen Printed Carbon Working Electrodes. Electroanalysis. 25(1): 47-50.
Tîlmaciu, C. M., & Morris, M. C. 2015. Carbon Nanotube Biosensors. Frontiers in Chemistry. 3(8): 1-21.
Venton, B. J., & Cao, Q. 2020. Fundamentals of Fast-Scan Cyclic Voltammetry for Dopamine Detection. Analyst. 145(4).
Wang, J. 2000. Analytical Electrochemistry. 2nd Edition. New York: Wiley-VCH.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.