REVIEW OF SILVER NANOPARTICLE SYNTHESIS USING LASER ABLATION; ITS CHARACTERIZATION, ANTIOXIDANT AND ANTIBACTERIAL FOR SKIN WOUNDS
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.21434Keywords:
Nanoparticles, Nanotechnology, nanoparticle synthesis, silver nanoparticles; laser ablationAbstract
This comprehensive review paper thoroughly investigates the synthesis of silver nanoparticles (AgNPs) through laser ablation and biosynthesis methods, exploring their potential applications in nanotechnology. The paper highlights the distinctive properties of AgNPs, including their notable antibacterial and anticancer attributes, wound healing capabilities, and therapeutic potential. The focus is specifically on the synthesis of small, spherical particles ranging from 2 to 5 nm. This investigation centers on key parameters crucial to the synthesis process, such as laser beam spot size, strength, ablation duration, and green synthesis factors like time, temperature, and concentration. In the realm of laser ablation optimization, the study scrutinizes the impact of various spot sizes on particle size distribution, variations in laser strength, and the intricate relationship between ablation duration and particle size. These analyses are strategically aligned to achieve the desired properties for the efficient production of AgNPs. Simultaneously, green synthesis techniques are employed to ensure an environmentally friendly approach, with careful consideration for factors like time, temperature, and concentration to attain targeted characteristics. The paper employs sophisticated characterization techniques, including dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV-Vis spectral analysis, for a comprehensive analysis of the synthesized AgNPs. DLS offers insights into size distribution and stability, SEM facilitates morphology visualization, and UV-Vis spectral analysis definitively confirms the presence of silver nanoparticles through characteristic absorption peaks.
References
Rahman, M. M., Alam Tumpa, M. A., Zehravi, M., Sarker, M. T., Yamin, M. D., Islam, M. R., Cavalu, S. 2022. An overview Of Antimicrobial Stewardship Optimization: The Use of Antibiotics in Humans and Animals to Prevent Resistance. Antibiotics. 11: 5: 667.
Stevens, D. L., Bisno, A. L., Chambers, H. F., Dellinger, E. P., Goldstein, E. J., Gorbach, S. L., Wade, J. C. 2014. Practice Guidelines for the Diagnosis and Management of Skin and Soft Tissue Infections: 2014 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases. 592: e10-e52.
Van Duin D., Paterson, D. L. 2016. Multidrug-resistant Bacteria in the Community: Trends and Lessons Learned. Infectious Disease Clinics. 30: 377-390.
Malik. S., Muhammad, K., Waheed, Y. 2023. Nanotechnology: A Revolution in Modern Industry. Molecules. 28: 661.
Walker, M., Cochrane, C. A., Bowler, P. G., Parsons, D., Bradshaw, P. 2006. Silver Deposition and Tissue Staining Associated with Wound Dressings Containing Silver. Ostomy/Wound Management. 52: 42-4.
Durner, J., Stojanovic, M., Urcan, E., Hickel, R., Reichl, F. X. 2011. Influence of Silver Nano-particles on Monomer Elution from Light-cured Composites. Dental Materials. 27: 631-636.
Penes O. N., Neagu, A. M., Plata. F., Paun, S. D. 2017. Fabric with Silver Thread Role in the Control of Bacterial Contamination in Critically Ill Patients/Tesaturi cu fir de argint având rol de control al contaminarii bacteriene la pacientii în stare critica. Industria Textila. 68: 54.
Naik, K., Kowshik, M. 2017. The Silver Lining: Towards the Responsible and Limited Usage of Silver. Journal of Applied Microbiology. 123: 1068-1087.
Hadrup, N., Sharma, A. K, Loeschner, K. 2018. Toxicity of Silver Ions, Metallic Silver, and Silver Nanoparticle Materials After In Vivo Dermal and Mucosal Surface Exposure: A Review. Regulatory Toxicology and Pharmacology. 98: 257-267.
Lansdown, A. B. 2010. A Pharmacological and Toxicological Profile of Silver as an Antimicrobial Agent in Medical Devices. Advances in Pharmacological and Pharmaceutical Sciences.
Bush, K., Bradford, P. A. 2016. β-Lactams and β-lactamase Inhibitors: An Overview. Cold Spring Harbor Perspectives in Medicine. 6.
Lee, S. H., Jun, B. H. 2019. Silver Nanoparticles: Synthesis and Application for Nanomedicine. International Journal of Molecular Sciences. 20: 865.
Ahmad, S. A., Das, S. S., Khatoon, A., Ansari, M. T., Afzal, M., Hasnain, M. S., Nayak, A. K. 2020. Bactericidal Activity of Silver Nanoparticles: A Mechanistic Review. Materials Science for Energy Technologies. 3: 756-769.
Bruna, T., Maldonado-Bravo, F., Jara, P., Caro, N. 2021. Silver Nanoparticles and Their Antibacterial Applications. International Journal of Molecular Sciences. 22: 7202.
Rafique, M., Rafique, M. S, Kalsoom, U., Afzal, A., Butt, S. H., Usman, A. 2019. Laser Ablation Synthesis of Silver Nanoparticles in Water and Dependence on Laser Nature. Optical and Quantum Electronics. 51: 1-11.
Russo, R. E., Mao, X. L., Yoo, J., Gonzalez, J. J. 2007. Laser Ablation. Laser-induced Breakdown Spectroscopy. 41-70.
Wang, H., Qiao, X., Chen, J., Ding, S. 2005. Preparation of Silver Nanoparticles by Chemical Reduction Method. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 256: 111-115.
Zhang, W., Qiao, X., Chen, J. 2007. Synthesis of Silver Nanoparticles Effects of Concerned Parameters in Water/oil Microemulsion. Materials Science and Engineering. 142: 1-15.
Darroudi, M., Zak, A. K., Muhamad, M. R., Huang, N. M., Hakimi M. 2012. Green Synthesis of Colloidal Silver Nanoparticles by Sonochemical Method. Materials Letters. 66: 117-120.
Starowicz, M., Stypuła, B., Banaś. 2006. Electrochemical Synthesis of Silver Nanoparticles. Electrochemistry Communications. 8: 227-230.
Yang, Y., Matsubara, S., Xiong, L., Hayakawa, T., Nogami M. 2007. Solvothermal Synthesis of Multiple Shapes of Silver Nanoparticles and Their SERS Properties. The Journal of Physical Chemistry C. 111: 9095-9104.
Zamiri, R., Zakaria, A., Abbastabar, H., Darroudi, M., Husin M. S., Mahdi, M. A. 2011. Laser-fabricated Castor Oil-capped Silver Nanoparticles. International Journal of Nanomedicine. 565-568.
Yu, J., and Zhou, X. 2013. Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates. Advances in Materials Science and Engineering.
Gao, L. 202 2. Dynamics of Drops and Microjets Subjected to Intense Laser Blasts. Polyu Electronic Theses. The Hongkong Polytechnic University.
Maressa, P., Anodio, L., Bernasconi, A., Demir, A. G, Previtali, B. 2015. Effect of Surface Texture on the Adhesion Performance of Laser Treated Ti6Al4V Alloy. The Journal of Adhesion. 91: 518-537.
Penide, J., del Val, J., Riveiro, A., Soto, R., Comesaña, R., Quintero, F., Pou, J. 2019. Laser Surface Blasting of Granite Stones using a Laser Scanning System. Coatings. 9: 131.
Chichkov, B. N., Momma, C., Nolte, S., Von Alvensleben, F., Tünnermann, A. 1996. Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids. Applied Physics A. 63: 109-115.
Pavlovich, V. V., Matveevich, S. A., Tu, H. C., Anatolievich P. A. 2015. Laser Ablation of Monocrystalline Silicon under Pulsed-frequency Fiber Laser. Journal Scientific and Technical of Information Technologies, Mechanics and Optics. 97: 426-434.
Neddersen, J., Chumanov, G., Cotton, T. M. 1993. Laser Ablation of Metals: A New Method for Preparing SERS Active Colloids. Applied Spectroscopy. 47(12): 1959-1964.
Mohammed, M., Diwan, A., Saleh, S. M., Salih, B. A. S. 2019. Fabrication of Copper Nanoparticles by Pulse Laser Ablation. Kufa Journal of Engineering. 10: 1-11.
Boutinguiza, M., Rodríguez-González, B., Del Val, J., Comesaña, R., Lusquiños, F., Pou, J. 2011. Laser-assisted Production of Spherical TiO2 Nanoparticles in Water. Nanotechnology. 22: 195606.
Amendola, V., Meneghetti, M. 2009. Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles. Physical Chemistry Chemical Physics 11. 3805-3821.
Astuti, S. D., Kharisma, D. H., Kholimatussa'diah, S., Zaidan, A. H. 2017. An in Vitro Antifungal Efficacy of Silver Nanoparticles Activated by Diode Laser to Candida albicans. AIP Conference Proceedings.
Astuti, S. D., Mahmud, A. F., Putra, A. P., Setiawatie, E. M., & Arifianto, D. 2020. Effectiveness of Bacterial Biofilms Photodynamic Inactivation Mediated by Curcumin Extract, Nanodoxycycline and Laser Diode. Biomedical Photonics. 9(4): 4-14.
Amendola, V., Meneghetti, M. 2013. What Controls the Composition and the Structure of Nanomaterials Generated by Laser Ablation in Liquid Solution? Physical Chemistry Chemical Physics. 15: 3027-3046.
Barcikowski, S., Compagnini, G. 2013. Advanced Nanoparticle Generation and Excitation by Lasers in Liquids. Physical Chemistry Chemical Physics.15: 3022-3026.
Wagener, P., Jakobi, J., Rehbock, C., Chakravadhanula V. S. K., Thede, C., Wiedwald, U., Barcikowski, S. 2016. Solvent-surface Interactions Control the Phase Structure in Laser-generated Iron-gold Core-Shell Nanoparticles. Scientific Reports. 6: 23352.
Fazio, E., Gökce, B., De Giacomo, A., Meneghetti, M., Compagnini, G., Tommasini, M., Neri F. 2020. Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications. Nanomaterials. 10: 2317.
Rehbock, C., Merk, V., Gamrad, L., Streubel, R., Barcikowski, S. 2013. Size Control of Laser-fabricated Surfactant-free Gold Nanoparticles with Highly Diluted Electrolytes and Their Subsequent Bioconjugation. Physical Chemistry Chemical Physics. 15: 3057-3067.
Barcikowski, S., Menéndez-Manjón, A., Chichkov, B., Brikas M., Račiukaitis, G. 2007. Generation of Nanoparticle Colloids by Picosecond and Femtosecond Laser Ablations in Liquid Flow. Applied Physics Letters. 91.
Xu, B., Song, R. G. 2010. Fabrication of Ag Nanoparticles Colloids by Pulsed Laser Ablation iZn Liquid. Advanced Materials Research. 123: 675-678.
Mendivil, M. I, Krishnan, B., Sanchez, F. A., Martinez, S., Aguilar-Martinez, J. A., Castillo, G. A, Shaji, S. 2013. Synthesis of Silver Nanoparticles and Antimony Oxide Nanocrystals by Pulsed Laser Ablation in Liquid Media. Applied Physics A. 110: 809-816.
Rao, S. V., Podagatlapalli, G. K., Hamad, S. 2014. Ultrafast Laser Ablation in Liquids for Nanomaterials and Applications. Journal of Nanoscience and Nanotechnology. 14(2): 1364-1388.
Valverde-Alva, M. A., García-Fernández, T., Villagrán-Muniz, M., Sánchez-Aké, C., Castañeda-Guzmán, R., Esparza-Alegría, E., Herrera, C. M. 2015. Synthesis of Silver Nanoparticles by Laser Ablation in Ethanol: A Pulsed Photoacoustic Study. Applied Surface Science. 355: 341-349.
Dell’Aglio, M., Mangini, V., Valenza, G., De Pascale, O., De Stradis, A., Natile, G., De Giacomo, A. 2016. Silver and Gold Nanoparticles Produced by Pulsed Laser Ablation in Liquid to Investigate Their Interaction with Ubiquitin. Applied Surface Science: 374: 297-304.
Resano-Garcia, A., Champmartin, S., Battie, Y., Koch, A., Naciri, A. E., Ambari, A., Chaoui, N. 2016. Highly-repeatable Generation of Very Small Nanoparticles by Pulsed-laser Ablation in Liquids of a High-speed Rotating Target. Physical Chemistry Chemical Physics.18: 32868-32875.
Kohsakowski, S., Santagata, A., Dell’Aglio, M., de Giacomo, A., Barcikowski, S., Wagener, P., Gökce, B. 2017. High Productive and Continuous Nanoparticle Fabrication by Laser Ablation of a Wire-target in a Liquid Jet. Applied Surface Science. 403: 487-499.
Grade, S., Eberhard, J., Wagener, P., Winkel, A., Sajti, C. L, Barcikowski, S., Stiesch, M. 2012. Therapeutic Window of Ligand‐Free Silver Nanoparticles in Agar‐Embedded and Colloidal State: In Vitro Bactericidal Effects and Cytotoxicity. Advanced Engineering Materials. 14: B231-B239.
Pandey, J. K, Swarnkar, R. K., Soumya, K. K, Dwivedi, P., Singh, M. K., Sundaram, S., Gopal, R. 2014. Silver Nanoparticles Synthesized by Pulsed Laser Ablation: As a Potent Antibacterial Agent for Human Enteropathogenic Gram-positive and Gram-negative Bacterial Strains. Applied Biochemistry and Biotechnology. 174: 1021-1031.
Korshed, P., Li, L., Liu, Z., Wang, T. 2016. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells. PLoS One. 11: e0160078.
Fernández-Arias, M., Boutinguiza, M., del Val, J., Medina, E., Rodríguez, D., Riveiro, A., Pou, J. 2019. RE-irradiation of Silver Nanoparticles Obtained by Laser Ablation in Water and Assessment of Their Antibacterial Effect. Applied Surface Science. 473: 548-554.
Ratti, M., Naddeo, J. J., Tan, Y., Griepenburg, J. C., Tomko, J., Trout, C., Klein, E. A. 2016. Irradiation with Visible Light Enhances the Antibacterial Toxicity of Silver Nanoparticles Produced by Laser Ablation. Applied Physics A. 122: 1-7.
Baiee, R., Liu, Z., Li, L. 2019. Understanding the Stability and Durability of Laser-generated Ag Nanoparticles and Effects on Their Antibacterial Activities. Advances in Natural Sciences: Nanoscience and Nanotechnology. 10: 035001.
Krce, L., Šprung, M., Maravić, A., Umek, P., Salamon, K., Krstulović, N., Aviani, I. 2020. Bacteria Exposed to Silver Nanoparticles Synthesized by Laser Ablation in Water: Modelling E. coli Growth and Inactivation. Materials. 13: 653.
Sun Y., Xia Y. 2002. Shape-controlled Synthesis of Gold and Silver Nanoparticles. Science. 298: 2176-2179.
Kim, D., Jeong S., Moon J. 2006. Synthesis of Silver Nanoparticles using the Polyol Process and the Influence of Precursor Injection. Nanotechnology. 17: 4019.
Rozykulyyeva, L., Astuti, S. D, Zaidan, A. H., Pradhana, A. A. S., Puspita, P. S. 2020. Antibacterial Activities of Green Synthesized Silver Nanoparticles from Punica Granatum Peel Extract. AIP Conference Proceedings 2314. AIP Publishing.
Chen, M., Feng, Y. G., Wang, X., Li, T. C., Zhang, J. Y., Qian D. J. 2007. Silver Nanoparticles Capped by Oleylamine: Formation, Growth, and Self-organization. Langmuir. 23: 5296-5304.
Agnihotri, S., Mukherji, S., Mukherji, S. 2014 Size-controlled Silver Nanoparticles Synthesized over the Range 5–100 nm using the Same Protocol and Their Antibacterial Efficacy. RSC Advances. 4: 3974-3983.
Li, W., Liu, Z., Fontana, F., Ding, Y., Liu, D., Hirvonen, J. T, Santos, H. A. 2018. Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Advanced Materials. 30: 1703740.
Sharma, G., Sharma, A. R., Kurian, M., Bhavesh R., Nam J. S., Lee, S. S. 2014. Green Synthesis of Silver Nanoparticle using Myristica Fragrans (nutmeg) Seed Extract and Its Biological Activity. Digest Journal of Nanomaterials & Biostructures (DJNB). 9(1).
Gurav, A. S, Kodas, T. T, Wang, L. M, Kauppinen, E. I, Joutsensaari, J. 1994. Generation of Nanometer-size Fullerene Particles via Vapor Condensation. Chemical Physics Letters. 218: 304-308.
Jung, J. H., Oh, H. C., Noh, H. S, Ji., J. H., Kim, S. S. 2006. Metal Nanoparticle Generation using a Small Ceramic Heater with a Local Heating Area. Journal of Aerosol Science. 37(12): 1662-1670.
Mafuné, F., Kohno, J. Y., Takeda, Y., Kondow T., Sawabe H. 2001. Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant. The Journal of Physical Chemistry B. 105: 5114-5120.
Kabashin, A. V., Meunier, M. 2003. Synthesis of Colloidal Nanoparticles during Femtosecond Laser Ablation of Gold in Water. Journal of Applied Physics. 94: 7941-7943.
Hwang, C. B, Fu, Y. S, Lu, Y. L, Jang, S. W, Chou, P. T, Wang, C. C, Yu, S. J. 2000. Synthesis, Characterization, and Highly Efficient Catalytic Reactivity of Suspended Palladium Nanoparticles. Journal of Catalysis. 195: 336-341.
Semerok, A. F., Chaleard, C., Detalle, V., Kocon, S., Lacour, J. L., Mauchien, P., Salle, B. 1998. Laser Ablation Efficiency of Pure Metals with Femtosecond, Picosecond, and Nanosecond Pulses. High-Power Laser Ablation. 3343: 1049-1055. SPIE.
Becker, M. F, Brock, J. R., Cai, H., Henneke, D. E., Keto, J. W., Lee, J., Glicksman, H. D. 1998. Metal Nanoparticles Generated by Laser Ablation. Nanostructured Materials. 10: 853-863.
Kazakevich, P. V., Simakin, A. V., Shafeev, G. A., Monteverde, F., Wautelet, M. 2007. Phase Diagrams of Laser-processed Nanoparticles of Brass. Applied Surface Science. 253: 7724-7728.
Mahfouz, R. M., Al-Khamis, K. M., Siddiqui, M. R. H., Al-Hokbany, N. S., Warad, I., Al-Andis, N. M. 2012. Kinetic Studies of Isothermal Decomposition of Unirradiated and γ-irradiated Gallium Acetylacetonate: New Route for Synthesis of Gallium Oxide Nanoparticles. Progress in Reaction Kinetics and Mechanism. 37: 249-262.
Mafuné, F., Kohno, J. Y., Takeda, Y., Kondow, T., Sawabe, H. 2000. Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation. The Journal of Physical Chemistry B. 104: 8333-8337.
TSUJI, T., USUKURA, J. 2012. Assessment on a Biological Toxicity Caused by Single-walled Carbon Nanotubes. Nano Biomedicine. 4: 125-132.
Kumar Ghosh, S., Kundu, S., Mandal, M., Nath, S., Pal, T. 2003. Studies on the Evolution of Silver Nanoparticles in Micelle by UV-photoactivation. Journal of Nanoparticle Research. 5: 577-587.
Iravani, S., Korbekandi, H., Mirmohammadi, S. V., Zolfaghari, ,B. 2014. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Research in Pharmaceutical Sciences. 9(6): 385.
Huang, L., Zhai, M. L, Long, D. W, Peng, J., Xu, L., Wu, G. Z, Wei, G. S. 2008. UV-induced Synthesis Characterization and Formation Mechanism of Silver Nanoparticles in Alkalic Carboxymethylated Chitosan Solution. Journal of Nanoparticle Research. 10: 1193-1202.
Balan, L., Schneider, R., Turck, C., Lougnot, D., Morlet-Savary, F. 2012. Photogenerating Silver Nanoparticles and Polymer Nanocomposites by Direct Activation in the Near Infrared. Journal of Nanomaterials. 2012: 1-1.
Sakamoto, M., Fujistuka, M., Majima, T. 2009. Light as a Construction Tool of Metal Nanoparticles: Synthesis and Mechanism. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 10: 33-56.
Sintubin, L., Verstraete, W., Boon, N. 2012. Biologically Produced Nanosilver: Current State and Future Perspectives. Biotechnology and Bioengineering. 109: 2422-2436.
Suresh, A. K., Pelletier, D. A., Wang, W., Moon, J. W., Gu, B., Mortensen, N. P., Doktycz, M. J. 2010. Silver Nanocrystallites: Biofabrication using Shewanella Oneidensis, and an Evaluation of their Comparative Toxicity on Gram-negative and Gram-positive Bacteria. Environmental Science & Technology. 44: 5210-5215.
Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., Venketesan, R. 2010. Biogenic Synthesis of Silver Nanoparticles and Their Synergistic Effect with Antibiotics: A Study against Gram-positive and Gram-negative Bacteria. Nanomedicine: Nanotechnology, Biology and Medicine. 6: 103-109.
Thirumalai Arasu, V., Prabhu, D., Soniya, M. 2010. Stable Silver Nanoparticle Synthesizing Methods and Its Applications. J. Bio. Sci. Res. 1: 259-270.
Pugazhenthiran, N., Anandan, S., Kathiravan, G., Udaya Prakash, N. K, Crawford, S., Ashokkumar, M. 2009. Microbial Synthesis of Silver Nanoparticles by Bacillus sp. Journal of Nanoparticle Research. 11: 1811-1815.
Haider, A., Kang, I. K. 2015. Preparation Of Silver Nanoparticles and Their Industrial and Biomedical Applications: A Comprehensive Review. Advances in Materials Science and Engineering. 1-16.
Yaqubi, A. K, Astuti, S. D, Permatasari, P. A. D, Komariyah, N., Endarko, E., Zaidan, A. H. 2022. In Vitro Inactivation Efficiency of Bacillus Subtilis and Escherichia Coli Bacteria in Sterilizers using Violet Irradiation. Biomedical Photonics. 11: 4-10.
Permatasari, P. A. D., Astuti, S. D., Yaqubi, A. K, Paisei, E. A. W, Anuar, N. 2023. Antibacterial Efficacy of Chlorophyll from Katuk (Sauropus androgynus (L) Merr) Leaves with Blue and Red Laser Activation against the Biofilm of Aggregatibacter Actinomycetemcomitans and Enterococcus Faecalis. Biomedical Photonics. 12: 14-21
Wang, J. X., Wen, L. X., Wang, Z. H., Chen, J. F. 2006. Immobilization of Silver on Hollow Silica Nanospheres and Nanotubes and Their Antibacterial Effects. Materials Chemistry and Physics. 96: 90-97.
Bosetti, M., Bianchi, A. E, Zaffe, D., Cannas, M. 2013. Comparative in Vitro Study of Four Commercial Biomaterials used for Bone Grafting. Journal of Applied Biomaterials & Functional Materials. 11: 80-88.
Choi, Y., Jeon, D., Choi, Y., Ryu, J., Kim, B. S. 2018. Self-assembled Supramolecular Hybrid of Carbon Nanodots and Polyoxometalates for Visible-light-driven Water Oxidation. ACS Applied Materials & Interfaces. 10: 13434-13441.
Yeo, S., Lee, T. H., Kim, M. J., Shim, Y. K., Yoon, I., Song, Y. K, Lee, W. K. 2023. Improved Anticancer Efficacy of Methyl Pyropheophorbide-a–incorporated Solid Lipid Nanoparticles in Photodynamic Therapy. Scientific Reports 13: 7391.
Duran, N., Simoes, M. B., de Moraes, A., Favaro, W. J, Seabra, A. B. 2016. Nanobiotechnology of Carbon Dots: A Review. Journal of Biomedical Nanotechnology. 12: 1323-1347.
Hahm, J. I., Lieber, C. M. 2004. Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations using Nanowire Nanosensors. Nano Letters. 4: 51-54.
Köhler, J. M, Held, M., Hübner, U., Wagner, J. 2007. Formation of Au/Ag Nanoparticles in a Two Step Micro Flow‐Through Process. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology. 30: 347-354.
Guo, J., Tang, J., Wang, J., Mao, S., Li, H., Wang, Y., Belfiore, L. A. 2018. Europium (III)-induced Water-soluble Nano-aggregates of Hyaluronic Acid and Chitosan: Structure and Fluorescence. MRS Communications. 8: 1224-1229.
Berciaud, S., Li, X., Htoon, H., Brus, L. E., Doorn, S. K, Heinz, T. F. 2013. Intrinsic Line Shape of the Raman 2D-mode in Freestanding Graphene Monolayers. Nano Letters. 13: 3517-3523.
El-Sayed, M., Masuhara, H., Pileni, M. P., Landes, C. 2012. Nano and Molecular Science and Technology Special Issue Honoring Paul Barbara. Accounts of Chemical Research. 45: 1842-1843.
Haider, A., Kang, I. K. 2015. Preparation of Silver Nanoparticles and Their Industrial and Biomedical Applications: A Comprehensive Review. Advances in Materials Science and Engineering. 1-16.
Dakal, T. C., Kumar, A., Majumdar, R. S., Yadav, V. 2016. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Frontiers in Microbiology. 7: 1831.
Suhariningsih, Dwi, W., Husen, S. A., Firas, K., Pramudita, P. A., & Astuti, S. D. 2020. The Effect of Electric Field, Magnetic Field, and Infrared Ray Combination to Reduce HOMA-IR Index and GLUT 4 in Diabetic Model of Mus Musculus. Lasers in Medical Science. 35(6): 1315-1321.
Ivask, A., ElBadawy, A., Kaweeteerawat, C., Boren, D., Fischer, H., Ji, Z., Godwin, H. A. 2014. Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver. ACS Nano. 8: 374-386.
Seil, J. T., Webster, T. J. 2012. Antimicrobial Applications of Nanotechnology: Methods and Literature. International Journal of Nanomedicine. 2767-2781.
Li, W. R, Xie, X. B., Shi, Q. S, Zeng, H. Y., Ou-Yang, Y. S., Chen, Y. B. 2010. Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology. 85: 1115-1122.
Gomaa, E. Z. 2017. Silver Nanoparticles as an Antimicrobial Agent: A Case Study on Staphylococcus aureus and Escherichia coli as Models for Gram-positive and Gram-negative Bacteria. The Journal of General and Applied Microbiology. 63: 36-43.
Lu, Z., Rong, K., Li, J., Yang, H., Chen, R. 2013. Size-dependent Antibacterial Activities of Silver Nanoparticles Against Oral Anaerobic Pathogenic Bacteria. Journal of Materials Science: Materials in Medicine. 24: 1465-1471.
Agnihotri, S., Mukherji, S., Mukherji, S. 2014. Size-controlled Silver Nanoparticles Synthesized over the Range 5–100 nm using the Same Protocol and Their Antibacterial Efficacy. RSC Advances. 4: 3974-3983.
Astuti, S. D., Victory, V. S., Mahmud, A. F., Putra, A. P., & Winarni, D. 2019. The Effects of Laser Diode Treatment on Liver Dysfunction of Mus Musculus Due to Carbofuran Exposure: An In Vivo Study. Journal of Advanced Veterinary and Animal Research. 6(4): 499.
Lansdown, A. B. 2004. A Review of the Use of Silver in Wound Care: Facts and Fallacies. British Journal of Nursing. 13: S6-S19.
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F.Z., Kim, T. N., Kim, J. O. 2000. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research. 52: 662-668.
Wong, K. K., Liu, X. 2010. Silver Nanoparticles the Real “Silver Bullet” in Clinical Medicine? MedChemComm. 1: 125-131.
Ul-Islam, M., Shehzad, A., Khan, S., Khattak, W. A, Ullah, M. W., Par, k J. K. 2014. Antimicrobial and Biocompatible Properties of Nanomaterials. Journal of Nanoscience and Nnanotechnology. 14: 780-791.
Sunarko, S. A., Ekasari, W., Astuti, S. D. 2017. Antimicrobial Effect of Pleomeleangustifolia Pheophytin A Activation with Diode Laser to Streptococcus Mutans. Journal of Physics: Conference Series. 853: 012039. IOP Publishing.
Marambio-Jones, C., Hoek, E. M. 2010. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. Journal of Nanoparticle Research. 12: 1531-1551.
Sondi, I., Salopek-Sondi, B. 2004. Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for Gram-negative Bacteria. Journal of Colloid and Interface Science. 275: 177-182.
Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D. 2007. Characterization of Enhanced Antibacterial Effects of Novel Silver Nanoparticles. Nanotechnology. 18: 225103.
Pal, S., Tak, Y. K., Song, J. M. 2007. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-negative Bacterium Escherichia coli. Applied and Environmental Microbiology. 73: 1712-1720.
Enoch, D. A., Ludlam, H. A., Brown, N. M. 2006. Invasive Fungal Infections: A Review of Epidemiology and Management Options. Journal of Medical Microbiology. 55: 809-818.
Guo, T., Nikolaev, P., Rinzler, A. G., Tomanek, D., Colbert, D. Smalley, R. E. 1995. Self-assembly of Tubular Fullerenes. The Journal of Physical Chemistry. 99: 10694-10697.
Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., Smalley, R. E. 1995. Catalytic Growth of Single-walled Manotubes by Laser Vaporization. Chemical Physics Letters. 243: 49-54.
Eason, R. 2007. Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials. John Wiley & Sons.
Grant-Jacob, J. A., Beecher, S. J., Parsonage, T. L., Hua, P., Mackenzie, J. I., Shepherd, D. P., Eason, R. W. 2016. An 11.5 W Yb: YAG Planar Waveguide Laser Fabricated via Pulsed Laser Deposition. Optical Materials Express. 6: 91-96.
Zheng, W., Lee, J., Gao, Z. W., Li, Y., Lin, S., Lau, S. P., Lee, L. Y. S. 2020. Laser‐assisted Ultrafast Exfoliation of Black Phosphorus in Liquid with Tunable Thickness for Li‐ion Batteries. Advanced Energy Materials. 10: 1903490.
Astuti, S. D., Sulistyo, A., Setiawatie, E. M., Khasanah, M., Purnobasuki, H., Arifianto, D., ... & Syahrom, A. 2021. An In-vivo Study of Photobiomodulation using 403 nm and 649 nm Diode Lasers for Molar Tooth Extraction Wound Healing in Wistar Rats. Odontology. 1-14.
Astuti, S. D., Widya, I. W., Arifianto, D., & Apsari, R. 2019. Effectiveness Photodynamic Inactivation with Wide Spectrum Range of Diode Laser to Staphylococcus aureus Bacteria with Endogenous Photosensitizer: An in vitro Study. Journal of International Dental and Medical Research. 12(2): 481-486.
Orellana, F. A., Gálvez, C. G., Roldán, M. T., García-Ruiz, C. 2013. Applications of Laser-ablation-inductively-coupled Plasma-mass Spectrometry in Chemical Analysis of Forensic Evidence. TrAC Trends in Analytical Chemistry. 42: 1-34.
Urgast, D. S., Beattie, J. H., Feldmann, J. 2014. Imaging of Trace Elements in Tissues: With a Focus on Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Current Opinion in Clinical Nutrition & Metabolic Care. 17: 431-439.
Pozebon, D., Scheffler, G. L., Dressler, V. L., Nunes, M. A. 2014. Review of the Applications of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) to the Analysis of Biological Samples. Journal of Analytical Atomic Spectrometry. 29: 2204-2228.
Kuang, S., Doran, S. A., Wilson, R. J., Goss, G. G., Goldberg, JI. 2002. Serotonergic Sensory‐motor Neurons Mediate a Behavioral Response to Hypoxia in Pond Snail Embryos. Journal of Neurobiology. 52: 73-83.
Jékely, G., Colombelli, J., Hausen, H., Guy, K., Stelzer, E., Nédélec, F., Arendt, D. 2008. Mechanism of Phototaxis in Marine Zooplankton. Nature. 456: 395-399.
Neddersen, J., Chumanov, G., Cotton, T. M. 1993. Laser Ablation of Metals: A New Method for Preparing SERS Active Colloids. Applied Spectroscopy. 47(12): 1959-1964.
Dolgaev, S. I., Simakin, A. V., Voronov, V. V., Shafeev, G. A., Bozon-Verduraz, F. 2002. Nanoparticles Produced by Laser Ablation of Solids in Liquid Environment. Applied Surface Science. 186: 546-551.
Boutinguiza, M., Rodríguez-González, B., Del Val, J., Comesaña, R., Lusquiños, F., Pou, J. 2011. Laser-assisted Production of Spherical TiO2 Nanoparticles in Water. Nanotechnology. 22: 195606.
Amendola, V., Meneghetti, M. 2009. Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles. Physical Chemistry Chemical Physics. 11: 3805-3821.
Amendola, V., Meneghetti, M. 2013. What Controls the Composition and the Structure of Nanomaterials Generated by Laser Ablation in Liquid Solution? Physical Chemistry Chemical Physics. 15: 3027-3046.
Barcikowski, S., Compagnini, G. 2013. Advanced Nanoparticle Generation and Excitation by Lasers in Liquids. Physical Chemistry Chemical Physics. 15: 3022-3026.
Wagener, P., Jakobi, J., Rehbock, C., Chakravadhanula, V. S. K., Thede, C., Wiedwald, U., Barcikowski, S. 2016. Solvent-surface Interactions Control the Phase Structure in Laser-generated Iron-gold Core-shell Nanoparticles. Scientific Reports. 6: 23352.
Fazio, E., Gökce, B., De Giacomo, A., Meneghetti, M., Compagnini, G., Tommasini, M., Neri, F. 2020. Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications. Nanomaterials. 10: 2317.
Rehbock, C., Merk, V., Gamrad, L., Streubel R, Barcikowski S. 2013. Size Control of Laser-fabricated Surfactant-free Gold Nanoparticles with Highly Diluted Electrolytes and Their Subsequent Bioconjugation. Physical Chemistry Chemical Physics. 15: 3057-3067.
Barcikowski S, Menéndez-Manjón A, Chichkov B, Brikas M, Račiukaitis G. 2007. Generation of Nanoparticle Colloids by Picosecond and Femtosecond Laser Ablations in Liquid Flow. Applied Physics Letters. 91.
Xu, B., Song, R. G. 2010. Fabrication of Ag Nanoparticles Colloids by Pulsed Laser Ablation in Liquid. Advanced Materials Research. 123: 675-678.
Mendivil, M. I., Krishnan, B., Sanche, F. A., Martinez, S, Aguilar-Martinez, J. A., Castillo, G. A., Shaji, S. 2013. Synthesis of Silver Nanoparticles and Antimony Oxide Nanocrystals by Pulsed Laser Ablation in Liquid Media. Applied Physics A. 110: 809-816.
Resano-Garcia, A., Champmartin, S., Battie, Y., Koch, A., Naciri, A. E., Ambari, A., Chaoui, N. 2016. Highly-repeatable Generation of Very Small Nanoparticles by Pulsed-laser Ablation in Liquids of a High-speed Rotating Target. Physical Chemistry Chemical Physics. 18: 32868-32875.
Kohsakowski, S., Santagata, A., Dell’Aglio, M., de Giacomo, A., Barcikowski, S., Wagener, P., Gökce, B. 2017. High Productive and Continuous Nanoparticle Fabrication by Laser Ablation of a Wire-Target in a Liquid Jet. Applied Surface Science. 403: 487-499.
Grade, S., Eberhard, J., Wagener, P., Winkel, A., Sajti, C. L., Barcikowski, S., Stiesch, M. 2012. Therapeutic Window of Ligand‐Free Silver Nanoparticles in Agar‐Embedded and Colloidal State: In Vitro Bactericidal Effects and Cytotoxicity. Advanced Engineering Materials. 14: B231-B239.
Pandey, J. K., Swarnkar, R. K., Soumya, K. K., Dwivedi, P., Singhm M. K., Sundaram, S., Gopal, R. 2014. Silver Nanoparticles Synthesized by Pulsed Laser Ablation: As a Potent Antibacterial Agent for Human Enteropathogenic Gram-positive and Gram-negative Bacterial Strains. Applied biochemistry and biotechnology. 174: 1021-1031.
Menazea, A. A. 2020. Femtosecond Laser Ablation-assisted Synthesis of Silver Nanoparticles in Organic and Inorganic Liquids Medium and Their Antibacterial Efficiency. Radiation Physics and Chemistry. 168: 108616.
Astuti, S. D., Prasaja, B. I., & Prijo, T. A. 2017. An in Vivo Photodynamic Therapy with Diode Laser to Cell Activation of Kidney Dysfunction. Journal of Physics: Conference Series. IOP Publishing. 853(1): 012038.
Astuti, S. D., Zaidan, A., Setiawati, E. M., Suhariningsih, S. 2016. Chlorophyll Mediated Photodynamic Inactivation of Blue Laser on Streptococcus Mutans. AIP Conference Proceedings. 1718(1). AIP Publishing.
Baiee, R., Liu, Z., Li, L. 2019. Understanding the Stability and Durability of Laser-generated Ag Nanoparticles and Effects on Their Antibacterial Activities. Advances in Natural Sciences: Nanoscience and Nanotechnology. 10: 035001.
Krce, L., Šprung, M., Maravić, A., Umek, P., Salamon, K., Krstulović, N., Aviani, I. 2020. Bacteria Exposed to Silver Nanoparticles Synthesized by Laser Ablation in water: Modelling E. coli Growth and Inactivation. Materials. 13: 653.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.