SAVITZKY-GOLAY AND WIENER FILTERING PERFORMANCE ANALYSIS IN ELECTROECEPHAOGRAPHY SIGNAL PROCESSING OF AUTISTIC CHILDREN

Authors

  • melinda melinda Universitas Syiah Kuala
  • Nurlida Basir Universiti Sains Islam Malaysia
  • Muhammad Saifullah Nur Universitas Syiah Kuala
  • Prima Dewi Purnamasari Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Fahmi Fahmi Department of Electrical Engineering, Universitas Sumatera Utara, Medan, Indonesia
  • Emerson Sinulingga Department of Electrical Engineering, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.21437

Abstract

Electroencephalography (EEG) measures electrical activity in the brain area by placing several electrodes on the scalp that can be used to diagnose autism spectrum disorder (ASD) and various abnormalities in the brain nerves. During the EEG signal recording process, the measured signal is often contaminated by various types of noise, which causes difficulties in analyzing the signal. Therefore, an effective method is needed to reduce these artifacts. This research applied wiener filter (WF) and savitzky-golay filter (SG) methods in reducing noise in the EEG signals of autistic people. This method will be combined with another method, namely Butterworth Band-Pass Filter, to concentrate the frequency in the range of 0.5-40 Hz. Based on the comparison of performance accuracy values using three calculation parameters, namely mean square errors (MSE), Mean absolute errors (MAE), and signal to noise ratio (SNR), this study proves that WF is superior to SG in producing EEG signals of autistic and normal people free from noise. WF shows an SNR value of 34.773 "dB" compared to 22.157 "dB" in SG, as well as lower MAE and MSE values of 0.521 μV and 0.616 μV2 compared to 1.875 μV and 16.990 μV2 in SG. These results confirm that WF is more effective in reducing noise interference and producing more accurate signal estimation in EEG data analysis.

Author Biography

  • melinda melinda, Universitas Syiah Kuala
    Department of Electrical and Computer Engineering, Faculty of Engineering, Universitas Syiah Kuala

References

Siuly Siuly, Y. Li, and Y. Zhang, EEG Signal Analysis and Classification Techniques and Applications. Springer International Publishing, 2016.

DOI: 10.1007/978-3-319-47653-7.

F. A. Rahman and M. F. Othman, “Eye blinks removal in single-channel eeg using Savitzky-Golay referenced adaptive filtering: A comparison with independent component analysis method,” ARPN J. Eng. Appl. Sci., vol. 10, no. 23, pp. 18147–18154, 2015.

G. Placidi, L. Cinque, and M. Polsinelli, “A fast and scalable framework for automated artifact recognition from EEG signals represented in scalp topographies of Independent Components,” Comput. Biol. Med., vol. 132, no. March, p. 104347, 2021.

DOI: 10.1016/j.compbiomed.2021.104347.

B. Somers, T. Francart, and A. Bertrand, “A Generic EEG Artifact Removal Algorithm based on the Multi-Channel Wiener Filter,” J. Neural Eng., pp. 1–12, 2018.

DOI: 10.1088/1741-2552/aaac92.

J. Yu, C. Li, K. Lou, C. Wei, and Q. Liu, “Embedding decomposition for artifacts removal in EEG signals,” J. Neural Eng., vol. 19, no. 2, pp. 1–27, 2022.

DOI: 10.1088/1741-2552/ac63eb.

H. Cai, Z. Qu, Z. Li, Y. Zhang, X. Hu, and B. Hu, “Feature-level fusion approaches based on multimodal EEG data for depression recognition,” Inf. Fusion, vol. 59, no. January, pp. 127–138, 2020.

DOI: 10.1016/j.inffus.2020.01.008.

A. Kawala-Sterniuk et al., “Comparison of smoothing filters in analysis of eeg data for the medical diagnostics purposes,” Sensors (Switzerland), vol. 20, no. 3, pp. 1–18, 2020.

DOI: 10.3390/s20030807.

S. N. S. Sayed Daud and R. Sudirman, “Artifact removal and brain rhythm decomposition for eeg signal using wavelet approach,” J. Teknol., vol. 78, no. 7–5, pp. 135–143, 2016.

DOI: 10.11113/jt.v78.9460.

A. Biasiucci, B. Franceschiello, and M. M. Murray, “Electroencephalography,” Curr. Biol., vol. 29, no. 3, pp. R80–R85, 2019.

DOI: 10.1016/j.cub.2018.11.052.

A. Borowicz, “Using a multichannel Wiener filter to remove eye-blink artifacts from EEG data,” Biomed. Signal Process. Control, vol. 45, pp. 246–255, 2018.

DOI: 10.1016/j.bspc.2018.05.012.

F. A. Alturki, K. Alsharabi, A. M. Abdurraqeeb, and M. Aljalal, “Eeg signal analysis for diagnosing neurological disorders using discrete wavelet transform and intelligent techniques†,” Sensors (Switzerland), vol. 20, no. 9, 2020.

DOI: 10.3390/s20092505.

S. Kotte and J. R. K. Kumar Dabbakuti, “Methods for removal of artifacts from EEG signal: A review,” J. Phys. Conf. Ser., vol. 1706, no. 1, 2020.

DOI: 10.1088/1742-6596/1706/1/012093.

S. Maruthachalam, “Analysis of artifacts in EEG signals for building BCIs,” Indian Institute of Technology Madras, 2020. [Online]. Available: http://arxiv.org/abs/2009.09116

L. Hu and Z. Zhang, EEG Signal Processing and Feature Extraction. Beijing: Springer Nature Singapore Pte Ltd., 2019.

DOI: 10.1007/978-981-13-9113-2_5.

G. Brihadiswaran, D. Haputhanthri, S. Gunathilaka, D. Meedeniya, and S. Jayarathna, “EEG-based processing and classification methodologies for autism spectrum disorder: A review,” J. Comput. Sci., vol. 15, no. 8, pp. 1161–1183, 2019.

DOI: 10.3844/jcssp.2019.1161.1183.

B. Arunkumar, S. A. A. Vijay, and K. S. Kumar, “Spectral analysis based differentiationfor EEG signals of children with autism,” J. Crit. Rev., vol. 7, no. 4, pp. 882–887, 2020.

DOI: 10.31838/jcr.07.04.168.

A. J. Casson, M. Abdulaal, M. Dulabh, S. Kohli, S. Krachunov, and E. Trimble, Electroencephalogram. Seamless Healthcare Monitoring: Advancements in Wearable, Attachable, and Invisible Devices, 2018.

DOI: 10.1007/978-3-319-69362-0

M. Zhao, M. Marino, J. Samogin, S. P. Swinnen, and D. Mantini, “Hand, foot and lip representations in primary sensorimotor cortex: a high-density electroencephalography study,” Sci. Rep., vol. 9, no. 1, pp. 1–12, 2019

DOI: 10.1038/s41598-019-55369-3.

S. Al-Momani, H. Al-Nashash, and H. S. Mir, “Comparison between Independent Component Analysis and Wiener-Hopf Filter Techniques for Eye Blink Removal,” Middle East Conf. Biomed. Eng. MECBME, vol. 2020-Octob, 2020.

DOI: 10.1109/MECBME47393.2020.9265171.

M. J. Ferdous and A. Sujan, “A Comparison of Wiener and Kalman Filters for the Artifact Suppression from EEG Signal,” Int. J. Sci. Res., vol. 6, no. 4, pp. 2319–7064, 2015.

DOI: 10.21275/ART20172896.

X. Kang, D. O. D. Handayani, and H. Yaacob, “Comparison between Butterworth Bandpass and Stationary Wavelet Transform Filter for Electroencephalography Signal,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1077, no. 1, p. 012024, 2021.

DOI: 10.1088/1757-899x/1077/1/012024.

S. Ibrahim, R. Djemal, and A. Alsuwailem, “Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis,” Biocybern. Biomed. Eng., vol. 38, no. 1, pp. 16–26, 2018.

DOI: 10.1016/j.bbe.2017.08.006.

N. A. Ali, A. R. Syafeeza, A. S. Jaafar, and M. K. M. F. Alif, “Autism spectrum disorder classification on electroencephalogram signal using deep learning algorithm,” IAES Int. J. Artif. Intell., vol. 9, no. 1, pp. 91–99, 2020.

DOI: 10.11591/ijai.v9.i1.pp91-99.

F. A. Alturki, M. Aljalal, A. M. Abdurraqeeb, K. Alsharabi, and A. A. Al-Shamma’a, “Common Spatial Pattern Technique with EEG Signals for Diagnosis of Autism and Epilepsy Disorders,” IEEE Access, vol. 9, pp. 24334–24349, 2021.

DOI: 10.1109/ACCESS.2021.3056619.

L. J. Gonçales, K. Farias, L. Kupssinskü, and M. Segalotto, “The effects of applying filters on EEG signals for classifying developers’ code comprehension,” J. Appl. Res. Technol., vol. 19, no. 6, pp. 584–602, 2021.

DOI: 10.22201/icat.24486736e.2021.19.6.1299.

S. V Vaseghi, Advanced Digital Signal Processing and Noise Reduction, 4th ed. 2008.

S.-P. Kim, “Preprocessing of EEG,” in Computational EEG Analysis, C.-H. Im, Ed. Springer Singapore, 2018, pp. 15–33.

DOI: 10.1007/978-981-13-0908-3_2.

U. Shukla, G. J. Saxena, M. Kumar, A. S. Bafila, A. Pundir, and S. Singh, “An improved decision support system for identification of abnormal EEG signals using a 1D convolutional neural network and Savitzky-Golay filtering,” IEEE Access, vol. 9, pp. 163492–163503, 2021.

DOI: 10.1109/ACCESS.2021.3133326.

S. Jahani, S. K. Setarehdan, D. A. Boas, and M. A. Yücel, “Motion artifact detection and correction in functional near-infrared spectroscopy: a new hybrid method based on spline interpolation method and Savitzky–Golay filtering,” Neurophotonics, vol. 5, no. 01, p. 1, 2018.

DOI: 10.1117/1.nph.5.1.015003.

N. K. Al-Qazzaz, M. K. Sabir, S. Ali, S. A. Ahmad, and K. Grammer, “Effective EEG Channels for Emotion Identification over the Brain Regions using Differential Evolution Algorithm,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 4703–4706, 2019.

DOI: 10.1109/EMBC.2019.8856854.

D. Acharya, A. Rani, S. Agarwal, and V. Singh, “Application of adaptive Savitzky–Golay filter for EEG signal processing,” Perspect. Sci., vol. 8, pp. 677–679, 2016.

DOI: 10.1016/j.pisc.2016.06.056.

Tanu and D. Kakkar, “Accounting for Order-Frame Length Tradeoff of Savitzky-Golay Smoothing Filters,” 2018 5th Int. Conf. Signal Process. Integr. Networks, SPIN 2018, no. i, pp. 805–810, 2018.

DOI: 10.1109/SPIN.2018.8474194.

Z. A. A. Alyasseri, A. T. Khader, M. A. Al-Betar, A. K. Abasi, and S. N. Makhadmeh, “EEG Signals Denoising Using Optimal Wavelet Transform Hybridized with Efficient Metaheuristic Methods,” IEEE Access, vol. 8, pp. 10584–10605, 2020.

DOI: 10.1109/ACCESS.2019.2962658.

J. Qi, J. Du, S. M. Siniscalchi, X. Ma, and C. H. Lee, “On Mean Absolute Error for Deep Neural Network Based Vector-to-Vector Regression,” IEEE Signal Process. Lett., vol. 27, pp. 1485–1489, 2020.

DOI: 10.1109/LSP.2020.3016837.

F. Li, Y. Xia, F. Wang, D. Zhang, X. Li, and F. He, “Transfer learning algorithm of P300-EEG signal based on XDAWN spatial filter and riemannian geometry classifier,” Appl. Sci., vol. 10, no. 5, 2020.

DOI: 10.3390/app10051804.

A. W. Pise and P. P. Rege, “Comparative Analysis of Various Filtering Techniques for Denoising EEG Signals,” 2021 6th Int. Conf. Converg. Technol. I2CT 2021, pp. 4–7, 2021

DOI: 10.1109/I2CT51068.2021.9417984.

S. Tsuchimoto et al., “Use of common average reference and large-Laplacian spatial-filters enhances EEG signal-to-noise ratios in intrinsic sensorimotor activity,” J. Neurosci. Methods, vol. 353, pp. 0–31, 2021.

DOI: 10.1016/j.jneumeth.2021.109089.

F. A. Alturki et al., “Common Spatial Pattern Technique with EEG Signals for Diagnosis of Autism and Epilepsy Disorders,” J. Neurosci. Methods, vol. 10, no. 5, pp. 4–7, 2021.

DOI: 10.1016/j.jneumeth.2021.109089.

M. Melinda, M. Oktiana, Y. Yunidar, N. H. Nabila, and I. K. A. Enriko, “Classification of EEG Signal using Independent Component Analysis and Discrete Wavelet Transform based on Linear Discriminant Analysis,” JOIV Int. J. Informatics Vis., vol. 7, no. 3, pp. 830–838, 2023.

DOI: 10.30630/joiv.7.3.1219.

Published

2025-03-12

Issue

Section

Science and Engineering

How to Cite

SAVITZKY-GOLAY AND WIENER FILTERING PERFORMANCE ANALYSIS IN ELECTROECEPHAOGRAPHY SIGNAL PROCESSING OF AUTISTIC CHILDREN. (2025). Jurnal Teknologi (Sciences & Engineering), 87(3). https://doi.org/10.11113/jurnalteknologi.v87.21437