THE IN-CONTROL PERFORMANCE OF THE ROBUST MULTIVARIATE SYNTHETIC CONTROL CHARTS FOR MONITORING MEAN SHIFT

Authors

  • Ong Gie Xao Department of Mathematics and Statistics, School of Quantitative Sciences, Universiti Utara Malaysia, 06010 UUM, Sintok, Kedah, Malaysia
  • Ayu Abdul-Rahman Department of Mathematics and Statistics, School of Quantitative Sciences, Universiti Utara Malaysia, 06010 UUM, Sintok, Kedah, Malaysia
  • Suhaida Abdullah Department of Mathematics and Statistics, School of Quantitative Sciences, Universiti Utara Malaysia, 06010 UUM, Sintok, Kedah, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.21511

Keywords:

Control Chart, False Alarm Rate, Multivariate Synthetic Control Chart, Robust Estimators, Statistical Process Control

Abstract

Multivariate synthetic control chart enables monitoring of multiple process variable simultaneously and hence, negate the inflation of false alarm rates as can be seen in an individual statistical chart. A robust version of the synthetic chart is necessary to mitigate the issue faces by the traditional multivariate synthetic chart, which is unable to produce reliable parameter estimates when Phase I data are contaminated. Therefore, this study proposed three new robust multivariate synthetic control charts (CMRCD, CWS and CWP) which were constructed via minimum regularized covariance determinant (MRCD) and winsorized modified one-step M-estimator (WMOM) for efficient process monitoring. The effectiveness of the proposed robust charts was evaluated in terms of false alarm rates by comparing their in-control performances to the traditional multivariate synthetic chart, Cmean, which is based on the sample mean. Via extensive simulation studies, the findings indicate that the proposed robust control charts outperform the traditional chart regardless of the dimensions or the level of contaminations in the dataset. The real data study further validates that the CMRCD, CWS and CWP perform better than the Cmean. Specifically, the three robust control charts show significant observations, illustrating better capability in monitoring river water quality when compared to the Cmean, i.e., the traditional multivariate synthetic chart.

References

Eppe, G., & De-Pauw, E. 2009. Advances in Quality Control for Dioxins Monitoring and Evaluation of Measurement Uncertainty from Quality Control Data. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 877(23): 2380-2387.

Doi: https://doi.org/10.1016/j.jchromb.2009.05.009.

Kharbach, M., Cherrah, Y., Vander Heyden, Y., & Bouklouze, A. 2017. Multivariate Statistical Process Control in Product Quality Review Assessment – A Case Study. Annales Pharmaceutiques Françaises. 75(6): 446-454.

Doi: https://doi.org/10.1016/j.pharma.2017.07.003.

Chen, Y., & Durango-Cohen, P. L. 2015. Development and Field Application of a Multivariate Statistical Process Control Framework for Health-monitoring of Transportation Infrastructure. Transportation Research Part B: Methodological. 81(1):7 8-102.

Doi: https://doi.org/10.1016/j.trb.2015.08.012.

Stoumbos, Z. G., & Sullivan, J. H. 2002. Robustness to Non-Normality of the Multivariate EWMA Control Chart. Journal of Quality Technology. 34(3): 260-276.

Doi: https://doi.org/10.1080/00224065.2002.11980157.

Haddad, F. 2021. Modified Hotelling T2 Control Charts Using Modified Mahalanobis Distance. International Journal of Electrical and Computer Engineering. 11(1): 284-292.

Doi: http://doi.org/10.11591/ijece.v11i1.pp284-292.

Aparisi, F., & Haro, C. L. 2003. A Comparison of T2 Control Charts with Variable Sampling Schemes as Opposed to MEWMA Chart. International Journal of Production Research. 41(10): 2169-2182.

Doi: https://doi.org/10.1080/0020754031000138655.

Champ, C. W., & Aparisi, F. 2008. Double Sampling Hotelling’s T2 Charts. Quality and Reliability Engineering International. 24(2): 153-166.

Doi: https://doi.org/10.1002/qre.872.

Hawkins, D. M., & Zamba, K. D. 2003. On Small Shifts in Quality Control. Quality Engineering. 16(1):143-149.

Doi: https://doi.org/10.1081/QEN-120020780.

Ghute, V. B., & Shirke, D. T. 2008. A Multivariate Synthetic Control Chart for Monitoring Process Mean Vector. Communications in Statistics—Theory and Methods. 37(13): 2136-2148.

Doi: https://doi.org/10.1080/03610920701824265.

Ghute, V. B., & Shirke, D. T. 2008b. A Multivariate Synthetic Control Chart for Process Dispersion. Quality Technology & Quantitative Management. 5(3): 271-288,

Doi:10.1080/16843703.2008.11673401.

Khoo, M. B. C., Atta, A. M. A., & Wu, Z. 2009. A Multivariate Synthetic Control Chart for Monitoring the Process Mean Vector of Skewed Populations Using Weighted Standard Deviations. Communications in Statistics—Simulation and Computation. 38(7): 1493-1518.

DOI: https://doi.org/10.1080/03610910903019905.

Rocke, D.M. (1989). Robust Control Charts. Technometrics. 31(2): 173-184.

Doi: https://doi.org/10.2307/1268815.

Abdul-Rahman, A., Syed-Yahaya, S. S., & Atta, A. M. A. 2021. Robust Synthetic Control Charting. International Journal of Technology. 12(2): 349-359.

Doi: https://doi.org/10.14716/ijtech.v12i2.4216.

Boudt, K., Rousseeuw, P., Vanduffel, S., & Verdonck, T. 2020. The Minimum Regularized Covariance Determinant Estimator. Statistics and Computing. 30: 113-128.

Doi: https://doi.org/10.1007/s11222-019-09869-x.

Haddad, F. S., Syed-Yahaya, S. S., & Alfaro, J. L. 2013. Alternative Hotelling’s T2 Charts using Winsorized Modified One-Step M-estimator. Quality and Reliability Engineering International. 29: 583-593.

DOI: https://doi.org/10.1002/qre.1407.

Croux, C., Haesbroeck, G. 1999. Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator. Journal of Multivariate Analysis. 71(2): 161-190.

DOI: https://doi.org/10.1006/jmva.1999.1839.

Rousseeuw, P. J., & Driessen, K. V. 1999. A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics. 41(3): 212-223.

Doi: https://doi.org/10.1080/00401706.1999.10485670.

Bulut, H. 2020. Mahalanobis Distance Based on Minimum Regularized Covariance Determinant Estimators for High Dimensional Data. Communication in Statistics- Theory and Methods. 49(283): 1-11.

Doi: https://doi.org/10.1080/03610926.2020.1719420.

Schreurs, J., Vranckx, I., Hubert, M., Suykens, J. A. K., & Rousseeuw, P. J. 2021. Outlier Detection in Non-elliptical Data by Kernel MRCD. Statistics and Computing. 31: 66.

https://doi.org/10.1007/s11222-021-10041-7.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Chang, S. C. & Bai, D. S. 2004. A Multivariate T2 Control Chart for Skewed Populations using Weighted Standard Deviations. Qual. Reliab. Engng. Int. 20: 31-46

Doi: https://doi.org/10.1002/qre.541.

Published

2024-11-11

Issue

Section

Science and Engineering

How to Cite

THE IN-CONTROL PERFORMANCE OF THE ROBUST MULTIVARIATE SYNTHETIC CONTROL CHARTS FOR MONITORING MEAN SHIFT. (2024). Jurnal Teknologi (Sciences & Engineering), 87(1). https://doi.org/10.11113/jurnalteknologi.v87.21511