CORRELATION BETWEEN COMPRESSIVE AND TENSILE SPLITTING STRENGTH OF GEOPOLYMER FIBER CONCRETE

Authors

  • Agustinus Agus Setiawan ᵃDepartment of Civil Engineering, Universitas Pembangunan Jaya, Cendrawasih Raya B7/P Bintaro Jaya, Sawah Baru, Ciputat, Tangerang Selatan, 15413, Indonesia ᵇCenter for Urban Studies, Universitas Pembangunan Jaya, Cendrawasih Raya B7/P Bintaro Jaya, Sawah Baru, Ciputat, Tangerang Selatan, 15413, Indonesia https://orcid.org/0000-0002-6518-1450
  • Harianto Hardjasaputra ᵃDepartment of Civil Engineering, Universitas Pembangunan Jaya, Cendrawasih Raya B7/P Bintaro Jaya, Sawah Baru, Ciputat, Tangerang Selatan, 15413, Indonesia ᵇCenter for Urban Studies, Universitas Pembangunan Jaya, Cendrawasih Raya B7/P Bintaro Jaya, Sawah Baru, Ciputat, Tangerang Selatan, 15413, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.21540

Keywords:

Geopolymer, nylon fiber, steel fiber, compressive strength, tensile splitting strength

Abstract

Geopolymer concrete mixture contain fine and coarse aggregate, fly ash and activator, composed from sodium silicate and sodium hydroxide. Like normal concrete, geopolymer concrete is weak in terms of tensile strength, so fiber needs to be added to improve the mechanical properties of geopolymer concrete. In this research nylon and steel fiber are added to the geopolymer concrete mixture, with percentage from 0.5%, 0.75%, 1%, 1.5% and 2% of volume. The correlation between compressive and tensile splitting strength of geopolymer steel and nylon fiber concrete were evaluated in this research program. The relationship between tensile splitting strength and compressive strength of geopolymer concrete will be built in a mathematical model using multivariable non-linear regression from SPSS software. The specimens are cylindrical concrete, which have diameter of 100 mm and height of 200 mm. The specimen undergo a curing process in an oven at 60oC for duration of 24 hour. Geopolymer concrete mixture with a fiber percentage of 0.75% have a good workability, since they still meet the slump value requirements (10 + 2 cm). The compressive strength reaches the highest value at 0.75%, for both steel and nylon fibers. The addition of up to 2% steel fiber produces a splitting tensile strength 12.06% higher than geopolymer concrete with nylon fiber. The equation model proposed for geopolymer fiber concrete is fspt = 0.049f'c.exp(0.7p), with the R-square values from 0.722 - 0.715.

References

Nabilla, M., Muthusamy, K., Embong, R., Kusbiantoro, A., Hashim, M. H. 2022. Environmental Impact of Cement Production and Solutions: A Review. Materials Today: Proceedings. 48(4): 741-746.

Doi: https://doi.org/10.1016/j.matpr.2021.02.212.

Benhelal, E. , Zahedi, G., Shamsaei, E., Bahadori, A. 2013. Global Strategies and Potentials to Curb CO2 Emissions in Cement Industry. Journal of Cleaner Production. 51: 142-161

Doi: https://doi.org/10.1016/j.jclepro.2012.10.049.

Setiawan, A., Hardjasaputra, H., Soegiarso, R. 2023. Embodied Carbon Dioxide of Fly Ash Based Geopolymer Concrete. IOP Conf. Ser.: Earth Environ. Sci. 1195: 012031. Doi: https://doi:10.1088/1755-1315/1195/1/012031.

Singh, B., Ishwarya, G., Gupta, M., Bhattacharyya, S. K. 2015. Geopolymer Concrete: A Review of Some Recent Developments. Construction and Building Materials. 85: 78-90

Doi: https://doi.org/10.1016/j.conbuildmat.2015.03.036.

Setiawan, A. A., Philip, F. J., & Permanasari, E. 2018. Mechanical Properties of Waste Plastic Banner Fiber Reinforced Concrete. Jurnal Teknologi. 80(5): 113-119.

Doi: https://doi.org/10.11113/jt.v80.11365.

Mostefa, A. H., Slimane, M. 2019. Study of Concrete Reinforced by Plastic Fibers Based on Local Materials. International Journal of Engineering Research in Africa. 42: 100-108.

Doi: 10.4028/www.scientific.net/JERA.42.100.

Ahmad, J., Zaid, O., Aslam, F., et al. 2021. Mechanical Properties and Durability Assessment of Nylon Fiber Reinforced Self-compacting Concrete. Journal of Engineered Fibers and Fabrics. 2021: 16.

Doi: 10.1177/15589250211062833.

Shahzad, A. 2012. Hemp Fiber And Its Composites - A Review. Journal of Composite Materials. 46(8): 973-986.

Doi: https://doi.org/10.1177/0021998311413623.

Awwad, E., Hamad, B. S., Mabsout, M., Khatib, H. 2012. Sustainable Concrete Using Hemp Fibers. Construction Materials. 166(1): 45-53.

Doi: 10.1680/coma.11.00006.

Ghosn, S., Cherkawi, N. & Hamad, B. 2020. Studies on Hemp and Recycled Aggregate Concrete. Int J Concr Struct Materials. 14: 54.

Doi: https://doi.org/10.1186/s40069-020-00429-6.

Rahim, S., Narayan, S. 2006. Bamboo and Wood Fibre Cement Composites for Sustainable Infrastructure Regeneration. Journal of Materials Science. 41(21): 6917-6924.

Doi: https://doi.org/10.1007/s10853-006-0224-3.

Ahmad, J., Zhou, Z., Deifala, A. F. 2023. Structural Properties of Concrete Reinforced with Bamboo Fibers: A Review. Journal of Materials Research and Technology. 24: 844-865.

Doi: https://doi.org/10.1016/j.jmrt.2023.03.038.

Kumar, V. P., Vasugi, V. 2020. Bamboo Materials in Cement, Geopolymer and Reinforced Concrete as Sustainable Solutions for Better Tomorrow. IOP Conf. Ser.: Earth Environ. Sci. 573: 012036.

Doi: 10.1088/1755-1315/573/1/012036.

Ahmad, J., Majdi, A., Deifalla, A. F., Kahla, N. B., El-Shorbagy, M. A. 2022. Concrete Reinforced with Sisal Fibers (SSF): Overview of Mechanical and Physical Properties. MDPI Journals, Crystals. 12(7): 952.

Doi: https://doi.org/10.3390/cryst12070952.

Muralidaran, R., Chandrasekaran, P. 2016. Study on Properties of Geopolymer Concrete with Sisal Fibre. International Journal of Innovative Research in Engineering Science and Technology. March 2016 Special Issue: 54-57.

Ahmad, J., Majdi, A., Deifalla, A. F., Ben Kahla, N., El-Shorbagy, M. A. 2022. Concrete Reinforced with Sisal Fibers (SSF): Overview of Mechanical and Physical Properties. Crystals. 12(7): 952.

Doi: https://doi.org/10.3390/cryst12070952.

Reddy, T. S. S., Prasad, C. V. S. R., Jogi, P. V. 2020. An Experimental Investigation on Light Emitting Concrete -Translucent Concrete. Journal of Xi'an University of Architecture & Technology. XII(4): 2747-2756.

Doi: 10.37896/JXAT12.04/1008.

Palanisamy, C., Krishnaswami, N., Velusamy, S. K., Krishnamurthy, H., Velmugaran, H. K., Udhayakumar, H. 2022. Transparent Concrete by using Optical Fibre. Materialstoday: Proceedings. 65(2): 1774-1778.

Doi: https://doi.org/10.1016/j.matpr.2022.04.799.

S. Sharifi, D. Navabi and A. Mosavi. 2023. Translucent Concrete: Comprehensive Review of Concepts, Recent Technologies and Advances in Light Transmitting Concrete. 2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania. 000685-000692. Doi: 10.1109/SACI58269.2023.10158620.

Akça, K. R., İpek, M., Çelenk, S., Karabulak, A. 2023. Experimental Investigation on Mechanical Properties of HSSCC Containing Waste Steel Fibers Obtained from End-Of-Life Tires. Journal of Construction. 22(1): 87-10.

Doi: https://doi.org/10.7764/RDLC.22.1.87.

Brandt, A. M. 2008. Fibrereinforced Cement-based (FRC) Composites after Over 40 Years of Development in Building and Civil Engineering. Composite Structures. 86(1-3): 3-9.

Li, B., Xu, L., Shi, Y., Chi, Y., Liu, Q., & Li, C. 2018. Effects of Fiber Type, Volume Fraction and Aspect Ratio on the Flexural and Acoustic Emission Behaviors of Steel Fiber Reinforced Concrete. Construction and Building Materials. 181: 474-486.

Korniejenko, K., Lin, W.-T., Šimonová, H. 2020. Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites. J. Compos. Sci. 4(3): 128.

Doi: https://doi.org/10.3390/jcs4030128.

Abdullah, M. M. A. B., Tahir, M. F. M., Tajudin, M. A. F. M. A., Ekaputri, J. J., Bayuaji, R., and Khatim, N. A. M. 2017. Study on the Geopolymer Concrete Properties Reinforced with Hooked Steel Fiber. IOP Conf. Series: Materials Science and Engineering. 267: 012014

Doi: https://doi:10.1088/1757-899X/267/1/012014.

Yazid, M. H. 2022. Mechanical Properties of Fly Ash-based Geopolymer Concrete Incorporation Nylon66 Fiber. MDPI Journals: Materials. 15: 9050

Doi: https://doi.org/10.3390/ma15249050.

Maksum, M., Alrasyid, H., Irmawan, M., Piscesa, B. 2020. Effect of Steel Fiber Volume Fraction to the Tensile Splitting Strength of Concrete Cylinder. IOP Conference Series: Materials Science and Engineering. 930: 021058

Doi: https://10.1088/1757-899X/930/1/012058.

I. C. Yeh. 1998. Modeling of Strength of High Performance Concrete using Artificial Neural Networks. Cem. Concr. Res. 28: 1797-1808.

C. Deepa, K. Sathiyakumari, V. Sudha. 2010. Prediction of the Compressive Strength of High Performance Concrete Mix using Tree based Modelling. Int. J. Comput. Appl. Technol. 6: 18-24.

U. Atici. 2011. Prediction of the Strength of Mineral Admixture Concrete using Multivariable Regression Analysis and an Artificial Neural Network. Expert. Syst. Appl. 38: 9609-9618.

J. S. Chou, C. K. Chiu, M. Farfoura, I. Al-Taharwa, I. 2011. Optimizing the Prediction Accuracy of Concrete Compressive Strength based on a Comparison of Data-mining Techniques. J. Comput. Civil. Eng. 25: 242-253. Doi: 10.1061/(ASCE)CP.1943-5487.0000088.

S. Chithra, S. R. R. Senthil Kumar, K. Chinnaraju, F. Alfin Ashmita. 2016. A Comparative Study on the Compressive Strength Prediction Models for High Performance Concrete Containing Nano Silica and Copper Slag using Regression Analysis and Artificial Neural Networks. Constr. Build. Mater. 114: 528-535.

Jin, Ruoyu & Chen, Q. & Soboyejo, W. 2018. Non-linear and Mixed Regression Models in Predicting Sustainable Concrete Strength. Construction and Building Materials. 170. 10.1016/j.conbuildmat.2018.03.063.

Downloads

Published

2024-06-02

Issue

Section

Science and Engineering

How to Cite

CORRELATION BETWEEN COMPRESSIVE AND TENSILE SPLITTING STRENGTH OF GEOPOLYMER FIBER CONCRETE. (2024). Jurnal Teknologi, 86(4), 71-78. https://doi.org/10.11113/jurnalteknologi.v86.21540