OPTIMISING ULTRASOUND-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM GINGER: A REVIEW
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.21543Keywords:
Ginger, ultrasound-assisted extraction, frequency, solvent, solvent concentration, temperature, solid-to-solvent ratio, extraction timeAbstract
Ginger (Zingiber officinale Roscoe) has a long-standing history as a therapeutic agent in traditional remedies due to its diverse pharmacological effects. This review explores the potential of phenolic compounds in ginger for disease treatment, highlighting the benefits of ultrasound-assisted extraction (UAE) as an eco-friendly alternative to conventional methods. UAE offers reduced solvent usage, shorter extraction times, and lower energy consumption. Optimal UAE parameters (ultrasonic frequency, solvent choice, solvent concentration, temperature, solid-to-solvent ratio, and extraction time) for extracting phenolic compounds from ginger are summarised, with examples from fruits and vegetables illustrating general trends and enhancing understanding. The review emphasises the importance of precise extraction techniques in maximising the health benefits of natural resources like ginger, with promising applications in both food and pharmaceutical industries.
References
Ramalingum, N., & Mahomoodally, M. F. 2014. The Therapeutic Potential of Medicinal Foods. Advances in Pharmacological Sciences. 2014: 354264.
Doi: https://dx.doi.org/10.1155/2014/354264.
Chaachouay, N., & Zidane, L. 2024. Plant-derived Natural Products: A Source for Drug Discovery and Development. Drugs and Drug Candidates. 3(1): 184–207.
Doi: https://dx.doi.org/10.3390/ddc3010011.
Samtiya, M., Aluko, R. E., Dhewa, T., & Moreno-Rojas, J. M. 2021. Potential Health Benefits of Plant Food-derived Bioactive Components: An Overview. Foods. 10(4): 839.
Doi: https://dx.doi.org/10.3390/foods10040839.
Krsnik, S., & Erjavec, K. 2024. Factors Influencing Use of Medicinal Herbs. Journal of Patient Experience. 11: 1–8.
Doi: https://dx.doi.org/10.1177/23743735241241181.
Nair, K. P. P. 2013. The Agronomy and Economy of Turmeric and Ginger: The Invaluable Medicinal Spice Crops. Amsterdam: Elsevier.
Doi: http://dx.doi.org/10.1016/C2011-0-07514-2.
Azelan, N. A., Hasham, R., Awang, M. A., Malek, R. A., Musa, N. F., & Aziz, R. 2015. Antibacterial Activity of Zingiber officinale and Zingiber zerumbet Essential Oils Extracted by Using Turbo Extractor Distillator (TED). Jurnal Teknologi. 77(3): 43–47.
Doi: http://dx.doi.org/10.11113/jt.v77.6003.
Stephenus, F. N., Benjamin, M. A. Z., Anuar, A., & Awang, M. A. 2023. Effect of Temperatures on Drying Kinetics, Extraction Yield, Phenolics, Flavonoids, and Antioxidant Activity of Phaleria macrocarpa (Scheff.) Boerl. (Mahkota Dewa) Fruits. Foods. 12(15): 2859.
Doi: http://dx.doi.org/10.3390/foods12152859.
Vieira, G. S., Cavalcanti, R. N., Meireles, M. A. A., & Hubinger, M. D. 2013. Chemical and Economic Evaluation of Natural Antioxidant Extracts Obtained by Ultrasound-Assisted and Agitated Bed Extraction from Jussara Pulp (Euterpe edulis). Journal of Food Engineering. 119(2): 196–204.
Doi: http://dx.doi.org/10.1016/j.jfoodeng.2013.05.030.
Awang, M. A., Nik Mat Daud, N. N. N., Mohd Ismail, N. I., Abdullah, F. I., & Benjamin, M. A. Z. 2023. A Review of Dendrophthoe pentandra (Mistletoe): Phytomorphology, Extraction Techniques, Phytochemicals, and Biological Activities. Processes. 11(8): 2348.
Doi: http://dx.doi.org/10.3390/pr11082348.
Chemat, F., Zill-e-Huma, & Khan, M. K. 2011. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrasonics Sonochemistry. 18(4): 813–835.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2010.11.023.
Jolad, S. D., Lantz, R. C., Guan, J. C., Bates, R. B., & Timmermann, B. N. 2005. Commercially Processed Dry Ginger (Zingiber officinale): Composition and Effects on LPS-Stimulated PGE2 Production. Phytochemistry. 66(13): 1614–1635.
Doi: http://dx.doi.org/10.1016/j.phytochem.2005.05.007.
Prasad, S., & Tyagi, A. K. 2015. Ginger and Its Constituents: Role in Prevention and Treatment of Gastrointestinal Cancer. Gastroenterology Research and Practice. 2015: 142979.
Doi: http://dx.doi.org/10.1155/2015/142979.
Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. Bin. 2019. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods. 8(6): 185.
Doi: http://dx.doi.org/10.3390/foods8060185.
Benzie, I. F. F., & Wachtel-Galor, S. 2011. Herbal Medicine: Biomolecular and Clinical Aspects (2nd ed.). Florida: CRC Press.
Ho, S.-C., & Su, M.-S. 2015. Optimized Heat Treatment Enhances the Anti-Inflammatory Capacity of Ginger. International Journal of Food Properties. 19(8): 1884–1898.
Doi: http://dx.doi.org/10.1080/10942912.2015.1084633.
Schadich, E., Hlavá, J., Volná, T., Varanasi, L., Hajdúch, M., & Džubák, P. 2016. Effects of Ginger Phenylpropanoids and Quercetin on Nrf2-ARE Pathway in Human BJ Fibroblasts and HaCaT Keratinocytes. BioMed Research International. 2016: 2173275.
Doi: http://dx.doi.org/10.1155/2016/2173275.
Ji, K., Fang, L., Zhao, H., Li, Q., Shi, Y., Xu, C., Wang, Y., Du, L., Wang, J., & Liu, Q. 2017. Ginger Oleoresin Alleviated γ-Ray Irradiation-Induced Reactive Oxygen Species via the Nrf2 Protective Response in Human Mesenchymal Stem Cells. Oxidative Medicine and Cellular Longevity. 2017: 1480294.
Doi: http://dx.doi.org/10.1155/2017/1480294.
Mohd Yusof, Y. A. 2016. Gingerol and Its Role in Chronic Diseases. In S. C. Gupta, S. Prasad, & B. B. Aggarwal (Eds.). Drug Discovery from Mother Nature (pp. 177–207). Cham: Springer International Publishing.
Doi: http://dx.doi.org/10.1007/978-3-319-41342-6_8.
Wang, S., Zhang, C., Yang, G., & Yang, Y. 2014. Biological Properties of 6-Gingerol: A Brief Review. Natural Product Communications. 9(7): 1027–1030.
Doi: http://dx.doi.org/ 10.1177/1934578x1400900736.
Garza-Cadena, C., Ortega-Rivera, D. M., Machorro-García, G., Gonzalez-Zermeño, E. M., Homma-Dueñas, D., Plata-Gryl, M., & Castro-Muñoz, R. 2023. A Comprehensive Review on Ginger (Zingiber officinale) as a Potential Source of Nutraceuticals for Food Formulations: Towards the Polishing of Gingerol and Other Present Biomolecules. Food Chemistry. 413: 135629.
Doi: http://dx.doi.org/10.1016/j.foodchem.2023.135629.
Roli, O. I., Adetunji, C. O., Mishra, R. R., Adetunji, J. B., Mishra, P., & Fatoki, T. H. 2020. Rediscovering Medicinal Activity and Food Significance of Shogaol (4, 6, 8, 10, and 12): Comprehensive Review. In P. Mishra, R. R. Mishra, & C. O. Adetunji (Eds.). Innovations in Food Technology: Current Perspectives and Future Goals (pp. 125–145). Singapore: Springer.
Doi: http://dx.doi.org/10.1007/978-981-15-6121-4_9.
Ahmad, B., Rehman, M. U., Amin, I., Arif, A., Rasool, S., Bhat, S. A., Afzal, I., Hussain, I., Bilal, S., & Rahman Mir, M. ur. 2015. A Review on Pharmacological Properties of Zingerone (4-(4-Hydroxy-3-Methoxyphenyl)-2-Butanone). The Scientific World Journal. 2015: 816364.
Doi: http://dx.doi.org/10.1155/2015/816364.
Esclapez, M. D., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. 2011. Ultrasound-Assisted Extraction of Natural Products. Food Engineering Reviews. 3(2): 108–120.
Doi: http://dx.doi.org/10.1007/s12393-011-9036-6.
Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., & Cintas, P. 2008. Improved Extraction of Vegetable Oils Under High-Intensity Ultrasound and/or Microwaves. Ultrasonics Sonochemistry. 15(5): 898–902.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2007.10.009.
Kumar, K., Srivastav, S., & Sharanagat, V. S. 2021. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing By-Products: A Review. Ultrasonics Sonochemistry. 70: 105325.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2020.105325.
Minjares-Fuentes, R., Femenia, A., Garau, M. C., Meza-Velázquez, J. A., Simal, S., & Rosselló, C. 2014. Ultrasound-Assisted Extraction of Pectins from Grape Pomace Using Citric Acid: A Response Surface Methodology Approach. Carbohydrate Polymers. 106(1): 179–189.
Doi: http://dx.doi.org/10.1016/j.carbpol.2014.02.013.
Bagherian, H., Zokaee Ashtiani, F., Fouladitajar, A., & Mohtashamy, M. 2011. Comparisons Between Conventional, Microwave- and Ultrasound-assisted Methods for Extraction of Pectin from Grapefruit. Chemical Engineering and Processing: Process Intensification. 50(11–12): 1237–1243.
Doi: http://dx.doi.org/10.1016/j.cep.2011.08.002.
Xu, Y., Zhang, L., Bailina, Y., Ge, Z., Ding, T., Ye, X., & Liu, D. 2014. Effects of Ultrasound and/or Heating on the Extraction of Pectin from Grapefruit Peel. Journal of Food Engineering. 126: 72–81.
Doi: http://dx.doi.org/10.1016/j.jfoodeng.2013.11.004.
Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Ye, X., & Liu, D. 2015. Ultrasound-Assisted Heating Extraction of Pectin from Grapefruit Peel: Optimization and Comparison with the Conventional Method. Food Chemistry. 178: 106–114.
Doi: http://dx.doi.org/10.1016/j.foodchem.2015.01.080.
Wang, W., Wu, X., Chantapakul, T., Wang, D., Zhang, S., Ma, X., Ding, T., Ye, X., & Liu, D. 2017. Acoustic Cavitation Assisted Extraction of Pectin from Waste Grapefruit Peels: A Green Two-Stage Approach and Its General Mechanism. Food Research International. 102: 101–110.
Doi: http://dx.doi.org/10.1016/j.foodres.2017.09.087.
Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. 2019. Optimization and Characterization of Pectin Extracted from Sour Orange Peel by Ultrasound Assisted Method. International Journal of Biological Macromolecules. 125: 621–629.
Doi: http://dx.doi.org/ 10.1016/j.ijbiomac.2018.12.096.
Maran, J. P., Priya, B., Al-Dhabi, N. A., Ponmurugan, K., Moorthy, I. G., & Sivarajasekar, N. 2017. Ultrasound Assisted Citric Acid Mediated Pectin Extraction from Industrial Waste of Musa balbisiana. Ultrasonics Sonochemistry. 35: 204–209.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2016.09.019.
Zhang, W., Zeng, G., Pan, Y., Chen, W., Huang, W., Chen, H., & Li, Y. 2017. Properties of Soluble Dietary Fiber-Polysaccharide from Papaya Peel Obtained Through Alkaline or Ultrasound-Assisted Alkaline Extraction. Carbohydrate Polymers. 172: 102–112.
Doi: http://dx.doi.org/10.1016/j.carbpol.2017.05.030.
Li, X., He, X., Lv, Y., & He, Q. 2014. Extraction and Functional Properties of Water-Soluble Dietary Fiber from Apple Pomace. Journal of Food Process Engineering. 37(3): 293–298.
Doi: http://dx.doi.org/10.1111/jfpe.12085.
Sun, J., Zhang, Z., Xiao, F., Wei, Q., & Jing, Z. 2018. Ultrasound-Assisted Alkali Extraction of Insoluble Dietary Fiber from Soybean Residues. IOP Conference Series: Materials Science and Engineering. 392(5): 052005.
Doi: http://dx.doi.org/10.1088/1757-899X/392/5/052005.
Balachandran, S., Kentish, S. E., Mawson, R., & Ashokkumar, M. 2006. Ultrasonic Enhancement of the Supercritical Extraction from Ginger. Ultrasonics Sonochemistry. 13(6): 471–479.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2005.11.006.
Sivakumar, V., Anna, J. L., Vijayeeswarri, J., & Swaminathan, G. 2009. Ultrasound Assisted Enhancement in Natural Dye Extraction from Beetroot for Industrial Applications and Natural Dyeing of Leather. Ultrasonics Sonochemistry. 16(6): 782–789.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2009.03.009.
Contreras-López, E., Castañeda-Ovando, A., Jaimez-Ordaz, J., del Socorro Cruz-Cansino, N., González-Olivares, L. G., Rodríguez-Martínez, J. S., & Ramírez-Godínez, J. 2020. Release of Antioxidant Compounds of Zingiber officinale by Ultrasound-Assisted Aqueous Extraction and Evaluation of Their in vitro Bioaccessibility. Applied Sciences. 10(14): 4987.
Doi: http://dx.doi.org/10.3390/app10144987.
Rouhani, S., Alizadeh, N., Salimi, S., & Haji-Ghasemi, T. 2009. Ultrasonic Assisted Extraction of Natural Pigments from Rhizomes of Curcuma longa L. Progress in Color, Colorants and Coatings. 2: 103–113.
Doi: http://dx.doi.org/10.30509/PCCC.2009.75754.
Murphy, A., Norton, E., Montgomery, F., Jaiswal, A. K., & Jaiswal, S. 2020. Ultrasound-Assisted Extraction of Polyphenols from Ginger (Zingiber officinale) and Evaluation of Its Antioxidant and Antimicrobial Properties. Journal of Food Chemistry and Nanotechnology. 6(2): 88–96.
Doi: http://dx.doi.org/10.17756/jfcn.2020-088.
Amirah, Reddy Prasad, D. M., & Khan, M. R. 2012. Comparison of Extraction Techniques on Extraction of Gallic Acid from Stem Bark of Jatropha curcas. Journal of Applied Sciences. 12(11): 1106–1111.
Doi: http://dx.doi.org/10.3923/jas.2012.1106.1111.
Dong, J., Liu, Y., Liang, Z., & Wang, W. 2010. Investigation on Ultrasound-Assisted Extraction of Salvianolic Acid B from Salvia miltiorrhiza Root. Ultrasonics Sonochemistry. 17(1): 61–65.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2009.05.006.
Thongson, C., Davidson, P. M., Mahakarnchanakul, W., & Weiss, J. 2004. Antimicrobial Activity of Ultrasound-Assisted Solvent-Extracted Spices. Letters in Applied Microbiology. 39(5): 401–406.
Doi: http://dx.doi.org/10.1111/j.1472-765X.2004.01605.x.
Jovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. 2017. Optimization of the Extraction Process of Polyphenols from Thymus serpyllum L. Herb Using Maceration, Heat- and Ultrasound-Assisted Techniques. Separation and Purification Technology. 179: 369–380.
Doi: http://dx.doi.org/10.1016/j.seppur.2017.01.055.
Fang, X., Gu, S., Jin, Z., Hao, M., Yin, Z., & Wang, J. 2018. Optimization of Ultrasonic-Assisted Simultaneous Extraction of Three Active Compounds from the Fruits of Forsythia suspensa and Comparison with Conventional Extraction Methods. Molecules. 23(9): 2115.
Doi: http://dx.doi.org/10.3390/molecules23092115.
Vural, N., Cavuldak, Ö. A., & Anlı, R. E. 2018. Multi Response Optimisation of Polyphenol Extraction Conditions from Grape Seeds by Using Ultrasound Assisted Extraction (UAE). Separation Science and Technology. 53(10): 1540–1551.
Doi: http://dx.doi.org/10.1080/01496395.2018.1442864.
Pinchao-Pinchao, Y. A., Ordoñez-Santos, L. E., & Osorio-Mora, O. 2019. Evaluation of the Effect of Different Factors on the Ultrasound Assisted Extraction of Phenolic Compounds of the Pea Pod. DYNA. 86(210): 211–215.
Doi: http://dx.doi.org/10.15446/dyna.v86n210.72880.
Rodrigues, S., Pinto, G. A. S., & Fernandes, F. A. N. 2008. Optimization of Ultrasound Extraction of Phenolic Compounds from Coconut (Cocos nucifera) Shell Powder by Response Surface Methodology. Ultrasonics Sonochemistry. 15(1): 95–100.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2007.01.006.
Maran, J. P., & Priya, B. 2014. Ultrasound-Assisted Extraction of Polysaccharide from Nephelium lappaceum L. Fruit Peel. International Journal of Biological Macromolecules. 70: 530–536.
Doi: http://dx.doi.org/10.1016/j.ijbiomac.2014.07.032.
Samaram, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., Bordbar, S., & Serjouie, A. 2015. Optimisation of Ultrasound-Assisted Extraction of Oil from Papaya Seed by Response Surface Methodology: Oil Recovery, Radical Scavenging Antioxidant Activity, and Oxidation Stability. Food Chemistry. 172: 7–17.
Doi: http://dx.doi.org/10.1016/j.foodchem.2014.08.068.
Ramić, M., Vidović, S., Zeković, Z., Vladić, J., Cvejin, A., & Pavlić, B. 2015. Modeling and Optimization of Ultrasound-Assisted Extraction of Polyphenolic Compounds from Aronia melanocarpa By-Products from Filter-Tea Factory. Ultrasonics Sonochemistry. 23: 360–368.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2014.10.002.
Aybastier, Ö., Işik, E., Şahin, S., & Demir, C. 2013. Optimization of Ultrasonic-Assisted Extraction of Antioxidant Compounds from Blackberry Leaves Using Response Surface Methodology. Industrial Crops and Products. 44: 558–565.
Doi: http://dx.doi.org/10.1016/j.indcrop.2012.09.022.
Şahin, S., & Şamli, R. 2013. Optimization of Olive Leaf Extract Obtained by Ultrasound-assisted Extraction with Response Surface Methodology. Ultrasonics Sonochemistry. 20(1): 595–602.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2012.07.029.
Wang, X., Wu, Y., Chen, G., Yue, W., Liang, Q., & Wu, Q. 2013. Optimisation of Ultrasound Assisted Extraction of Phenolic Compounds from Sparganii Rhizoma with Response Surface Methodology. Ultrasonics Sonochemistry. 20(3): 846–854.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2012.11.007.
Hammi, K. M., Jdey, A., Abdelly, C., Majdoub, H., & Ksouri, R. 2015. Optimization of Ultrasound-assisted Extraction of Antioxidant Compounds from Tunisian Zizyphus lotus Fruits using Response Surface Methodology. Food Chemistry. 184: 80–89.
Doi: http://dx.doi.org/10.1016/j.foodchem.2015.03.047
Shirsath, S. R., Sonawane, S. H., & Gogate, P. R. 2012. Intensification of Extraction of Natural Products Using Ultrasonic Irradiations—A Review of Current Status. Chemical Engineering and Processing: Process Intensification. 53: 10–23.
Doi: http://dx.doi.org/10.1016/j.cep.2012.01.003.
Leong, T., Ashokkumar, M., & Kentish, S. 2011. The Fundamentals of Power Ultrasound - A Review. Acoustics Australia. 39(2): 54–63.
Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. 2018. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chinese Medicine. 13(1): 20.
Doi: http://dx.doi.org/10.1186/s13020-018-0177-x.
Rodrigues, S., Fernandes, F. A. N., de Brito, E. S., Sousa, A. D., & Narain, N. 2015. Ultrasound Extraction of Phenolics and Anthocyanins from Jabuticaba Peel. Industrial Crops and Products. 69: 400–407.
Doi: http://dx.doi.org/10.1016/j.indcrop.2015.02.059.
Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Mayor, L., Ballesteros, R., Conidi, C., & Cassano, A. 2015. Optimization of Conventional and Ultrasound Assisted Extraction of Flavonoids from Grapefruit (Citrus paradisi L.) Solid Wastes. LWT - Food Science and Technology. 64(2): 1114–1122.
Doi: http://dx.doi.org/10.1016/j.lwt.2015.07.024.
Celli, G. B., Ghanem, A., & Brooks, M. S.-L. 2015. Optimization of Ultrasound-Assisted Extraction of Anthocyanins from Haskap Berries (Lonicera caerulea L.) Using Response Surface Methodology. Ultrasonics Sonochemistry. 27: 449–455.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2015.06.014.
Al-Dhabi, N. A., Ponmurugan, K., & Maran Jeganathan, P. 2017. Development and Validation of Ultrasound-Assisted Solid-Liquid Extraction of Phenolic Compounds from Waste Spent Coffee Grounds. Ultrasonics Sonochemistry. 34: 206–213.
Doi: http://dx.doi.org/10.1016/j.ultsonch.2016.05.005.
Zhang, Z.-S., Wang, L.-J., Li, D., Jiao, S.-S., Chen, X. D., & Mao, Z.-H. 2008. Ultrasound-Assisted Extraction of Oil from Flaxseed. Separation and Purification Technology. 62(1): 192–198.
Doi: http://dx.doi.org/10.1016/j.seppur.2008.01.014.
Chua, S. C., Tan, C. P., Mirhosseini, H., Lai, O. M., Long, K., & Baharin, B. S. 2009. Optimization of Ultrasound Extraction Condition of Phospholipids from Palm-Pressed Fiber. Journal of Food Engineering. 92(4): 403–409.
Doi: http://dx.doi.org/10.1016/j.jfoodeng.2008.12.013.
Lenth, R. V. 2009. Response-Surface Methods in R, Using RSM. Journal of Statistical Software. 32(7): 1–21.
Doi: http://dx.doi.org/10.18637/jss.v032.i07.
Ghasemzadeh, A., Jaafar, H. Z. E., & Rahmat, A. 2015. Optimization Protocol for the Extraction of 6-Gingerol and 6-Shogaol from Zingiber officinale var. rubrum Theilade and Improving Antioxidant and Anticancer Activity Using Response Surface Methodology. BMC Complementary and Alternative Medicine. 15(1): 258.
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.