MINIATURIZATION OF STACKED WEARABLE ANTENNA FOR 5G APPLICATIONS
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.21696Keywords:
5G application, bending assessment, stacked antenna and Wearable antennaAbstract
Wearable antennas have significantly expanded the capabilities of electronic devices, as they can now be seamlessly integrated into clothing for user convenience. The advent of 5G has opened up possibilities for enhanced functionality, necessitating compact antennas with high gain for efficient data transmission. In this paper, a sub-6GHz 5G stacked wearable antenna is proposed. The choice of a rectangular patch structure was made for its simplicity and ease of fabrication. A comprehensive analysis of antenna design, progressing from a single layer to a multilayer configuration is explained. The antenna was designed using 1mm felt and Shieldit Super conductor, with a 50 Ω coaxial feed. The proposed stacked three-layer antenna, with substrate dimensions of 44 x 44 mm², achieves a gain of 2.7 dBi. Stacking the substrate and patch layer improves the antennas’ performance, especially the impedance bandwidth and gain. On top of that, the antenna dimensions were reduced to 57% while maintaining its performance. Bending tests conducted in both X- and Y-axes demonstrate that the antenna's performance remains within an acceptable range. Although the resonating frequency shifted to 3.4 GHz in 3 layers during bending in Y-axis, the gain was kept to 1.8dBi. Both measured and simulated results exhibit good consistency, with a slight shift observed in the case of the three-layer structure.
References
K. N. Paracha, S. K. Abdul Rahim, P. J. Soh, and M. Khalily. 2019. Wearable Antennas: A Review of Materials, Structures, and Innovative Features for Autonomous Communication and Sensing. IEEE Access. 7: 56694-56712.
M. Pandimadevi, R. Tamilselvi, and M. P. Beham. 2019. Design Issues of Flexible Antenna -A Review. Int. J. Adv. Trends Comput. Sci. Eng. 8(4): 1386-1394. Doi: 10.30534/ijatcse/2019/55842019.
W. A. Awan, N. Hussain, A. Ghaffar, A. Zaidi, and X. J. Li. 2020. A Compact Flexible Antennas for ISM and 5G Sub-6- GHz band Application. WSA 2020; 24th International ITG Workshop on Smart Antennas. 1-3.
F. F. Hashim, W. N. L. B. Mahadi, T. Bin Abdul Latef, and M. Bin Othman. 2022. Key Factors in the Implementation of Wearable Antennas for WBNs and ISM Applications: A Review WBNs and ISM Applications: A Review. Electron. 11(15). Doi: 10.3390/electronics11152470.
N. A. Shamsudin and S. Mohd Shah. 2021. Miniaturized Dual-Band Dual-Mode Microstrip Patch Antenna with Defected Ground Structure for Wearable Applications. J. Electron. Volt. Appl. 2(2): 120-128. Doi: 10.30880/jeva.2021.02.02.013.
Z. Tang, J. Liu, Y. M. Cai, J. Wang, and Y. Yin. 2018. A Wideband Differentially Fed Dual-Polarized Stacked Patch Antenna with Tuned Slot Excitations. IEEE Trans. Antennas Propag. 66(4): 2055-2060. Doi: 10.1109/TAP.2018.2800764.
A. R. Chandran, N. Timmons, and J. Morrison. 2014. Stacked Circular Patch Antenna for Medical BAN. 2014 Loughborough Antennas and Propagation Conference, LAPC 2014. 22-25. Doi: 10.1109/LAPC.2014.6996311.
Parthasarathy, A. Chandrasekar, and P. G. V. Ramesh. 2019. A Compact Wide Band Multi-stacked Patch Antenna for UWB Applications. Proceedings of the 2019 TEQIP - III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks, IMICPW 2019. 77-80. Doi: 10.1109/IMICPW.2019.8933207.
C. Saetiaw, S. Summart, and C. Thongsopa. 2017. Curved Double-layer Strip Folded Dipole Antenna for WBAN Applications. 2017 International Electrical Engineering Congress, iEECON 2017. 17: 75-78. Doi: 10.1109/IEECON.2017.8075825.
Q. Ren, X. Zhu, X. Liu, and H. Yang. 2020. Millimeter Wave Wearable Modified Yagi Antenna. 2020 IEEE MTT-S International Wireless Symposium, IWS 2020 - Proceedings. 8-10. Doi: 10.1109/IWS49314.2020.9360183.
G. He. 2018. Dual-Band and Dual-Polarized Antenna for Wearable Application. 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies, UCMMT 2018 - Proceedings. 1: 1-3. Doi: 10.1109/UCMMT45316.2018.9015764.
N. Gupta, V. K. Singh, Z. Ali, and J. Ahirwar. 2016. Stacked Textile Antenna for Multi Band Application Using Foam Substrate. Procedia Comput. Sci. 85: 871-877. Doi: 10.1016/j.procs.2016.05.277.
B. Y. Yu et al. 2022. Flexible and Wearable Hybrid RF and Solar Energy Harvesting System. IEEE Trans. Antennas Propag. 70(3): 2223-2233. Doi: 10.1109/TAP.2021.3118814.
Y. Fang, M. Tang, and Y. P. Zhang. 2022. A Decoupling Structure for Mutual Coupling Suppression in Stacked Microstrip Patch Antenna Array. IEEE Antennas Wirel. Propag. Lett. 21(6): 1110-1114. Doi: 10.1109/LAWP.2022.3158420.
R. Joshi et al. 2020. Dual-Band, Dual-Sense Textile Antenna with AMC Backing for Localization Using GPS and WBAN/WLAN. IEEE Access. 8: 89468-89478. Doi: 10.1109/ACCESS.2020.2993371.
M. Aboualalaa et al. 2019. Independent Matching Dual-Band Compact Quarter-Wave Half-Slot Antenna for Millimeter-Wave Applications. IEEE Access. 7: 130782-130790. Doi: 10.1109/ACCESS.2019.2940273.
L. Zhang et al. 2021. A Single-Turn Stacked Spiral Antenna with Ultrawide Bandwidth and Compact Size. IEEE Trans. Antennas Propag. 69(3): 1740-1745. Doi: 10.1109/TAP.2020.3016503.
J. Parron, E. A. Cabrera-Hernandez, A. Tennant, and P. De Paco. 2021. Multiport Compact Stacked Patch Antenna with 360° Beam Steering for Generating Dynamic Directional Modulation. IEEE Trans. Antennas Propag. 69(2): 1162-1167. Doi: 10.1109/TAP.2020.3008065.
K. Mahendran, K. Dhivya, and V. Prasanniya. 2020. Microstrip Patch Antenna Enhancement Techniques: a Survey. Int. J. Eng. Appl. Sci. Technol. 04(11): 245-249. Doi: 10.33564/ijeast.2020.v04i11.042.
N. Bahari, M. F. Jamlos, and M. M. Isa. 2019. Gain Enhancement of Microstrip Patch Antenna using Artificial Magnetic Conductor. Bull. Electr. Eng. Informatics. 8(1): 166-171. Doi: 10.11591/eei.v8i1.1409.
C. Shi, J. Zou, J. Gao, and C. Liu. 2022. Gain Enhancement of a Dual-Band Antenna with the FSS. Electron. 11(18). Doi: 10.3390/electronics11182882.
I. Adam et al. 2021. Investigation on Wearable Antenna under Different Bending Conditions for Wireless Body Area Network (WBAN) Applications. Int. J. Antennas Propag. 2021: 1-9. Doi: 10.1155/2021/5563528.
P. J. Soh, G. A. E. Vandenbosch, F. H. Wee, A. Van Den Bosch, M. Martínez-Vázquez, and D. Schreurs. 2015. Specific Absorption Rate (SAR) Evaluation of Textile Antennas. IEEE Antennas Propag. Mag. 57(2): 229-240.
I. M. Ibrahim, T. A. Rahman, and Z. Zakaria. 2016. 26 GHz Open Ended Air Gap Cavity RLSA Antenna for Next Generation Broadband Wireless Access. J. Telecommun. Electron. Comput. Eng. 8(4): 21-24.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.