EFFECT OF FLUX APPLICATION DURING IN-SITU CASTING AS A DIRECT RECYCLING OF ALSI7MG ALUMINIUM ALLOY MACHINING CHIPS
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.21761Keywords:
Aluminium, In-situ casting, In-situ melting, Aluminium Oxide, Aluminium recyclingAbstract
Recycling aluminium (Al) waste by secondary smelting production saves 95% energy had encourages a new alternative recycling technique known as the in-situ casting or melting to transform waste into product directly. Therefore, aluminium (AlSi7Mg) machining chips with flux addition were heated for 30 minutes in a laboratory furnace at 650°C and 700°C. The physical of Al chips turned from sparkling silvery grey to dusty grey after being heated indicating oxidation. The machining chips had partially melted and fused together however being interrupted by thin oxide layer. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) reveal the Al and oxygen (O), while x-ray diffaction (XRD) analysis confirmed aluminium oxide (Al2O3) present in the fused Al chips.
References
Georgantzia, E., Gkantou, M., & Kamaris, G. S. 2021. Aluminium Alloys as Structural Material: A Review of Research. Engineering Structures. 227: 111372.
Doi: https://doi.org/10.1016/j.engstruct.2020.111372.
Tajudin, N. S., Zulkifli, M., Miskon, M. F., Anuar, M. I., Hashim, Z., Faudzi, F., & Jamaluddin, N. M. A. 2022. Integrated Approach of Heavy Metal Evaluation Using Geostatistical and Pollution Assessment Index in Soil of Bauxite Mining Area. Pertanika Journal of Science and Technology. 30(2): 1545–1566.
Doi: https://doi.org/10.47836/pjst.30.2.38.
Padamata, S. K., Yasinskiy, A., & Polyakov, P. 2021. A Review of Secondary Aluminum Production and Its Byproducts. JOM. 73(9): 2603–2614.
Doi: https://doi.org/10.1007/s11837-021-04802-y.
El Mehtedi, M., Buonadonna, P., Carta, M., El Mohtadi, R., Mele, A., & Morea, D. 2023. Sustainability Study of a New Solid-State Aluminum Chips Recycling Process: A Life Cycle Assessment Approach. Sustainability (Switzerland). 15(14).
Doi: https://doi.org/10.3390/su151411434.
Nizam, S., Rahim, A., Zaniel Mahadzir, M., Lajis, M. A., Sultan, P., & Mu’adzam Shah, A. H. 2019. Surface Fracture Mode of Recycling Aluminum 6061 Chips by The Hot Extrusion Process. International Journal of Advanced Research in Engineering Innovation. 1(2).
DOI:https://doi.org/https://myjms.mohe.gov.my/index.php/ijarei/article/view/7583.
Kadir, M. I. A., Mustapa, M. S., Latif, N. A., & Mahdi, A. S. 2017. Microstructural Analysis and Mechanical Properties of Direct Recycling Aluminium Chips AA6061/Al Powder Fabricated by Uniaxial Cold Compaction Technique. Procedia Engineering. 184: 687–694.
Doi: https://doi.org/10.1016/j.proeng.2017.04.141.
Wagiman, A., Mustapa, M. S., Asmawi, R., Shamsudin, S., Lajis, M. A., & Mutoh, Y. 2020. A Review on Direct Hot Extrusion Technique in Recycling of Aluminium Chips. The International Journal of Advanced Manufacturing Technology. 106(1–2): 641–653. https://doi.org/10.1007/s00170-019-04629-7.
Shamsudin, S., Lajis, M., & Zhong, Z. W. 2016. Evolutionary in Solid State Recycling Techniques of Aluminium: A Review. Procedia CIRP. 40: 256–261.
Doi: https://doi.org/10.1016/j.procir.2016.01.117.
Barbosa, J., & Puga, H. 2017. Ultrasonic Melt Processing in the Low Pressure Investment Casting of Al Alloys. Journal of Materials Processing Technology. 244: 150–156.
Doi: https://doi.org/10.1016/j.jmatprotec.2017.01.031.
Dojka, R., Jezierski, J., & Campbell, J. 2018. Optimized Gating System for Steel Castings. Journal of Materials Engineering and Performance. 27(10): 5152–5163.
Doi: https://doi.org/10.1007/s11665-018-3497-1.
Saleh, A. 2020. Characteristics of the Molten Aluminium Penetration on the Al2O3 Oxide Crust during In-Situ Melting. International Journal of Advanced Trends in Computer Science and Engineering. 9(1.4): 224–228.
Doi: https://doi.org/10.30534/ijatcse/2020/3391.42020.
Li, C., Li, J. guo, Mao, Y. zhe, & Ji, J. cheng. 2017. Mechanism to Remove Oxide Inclusions from Molten Aluminum by Solid Fluxes Refining Method. China Foundry. 14(4): 233–243.
Doi: https://doi.org/10.1007/s41230-017-7005-2.
Jafari, H., Idris, M. H., & Ourdjini, A. 2013. Effect of Thickness and Permeability of Ceramic Shell Mould on In-situ Melted AZ91D Investment Casting. Applied Mechanics and Materials. 465-466: 1087–1092.
Doi: https://doi.org/10.4028/www.scientific.net/AMM.465-466.1087.
Shi, M., & Li, Y. 2023. Performance Improvement in Aluminum Alloy Treated by Salt Flux with Different Fluorides. Journal of Materials Engineering and Performance. 32(7): 3065–3072.
Doi: https://doi.org/10.1007/s11665-022-07306-1.
Moodispaw, M. P., Cinkilic, E., & Luo, A. A. 2024. Thermodynamic Modeling of Solid Flux Interactions with Molten Aluminum. International Journal of Metalcasting. https://doi.org/10.1007/s40962-023-01256-7.
Mishra, R. R., & Sharma, A. K. 2018. Experimental Investigation on In-Situ Microwave Casting of Copper. IOP Conference Series: Materials Science and Engineering. 346(1): 012052.
Doi: https://doi.org/10.1088/1757-899X/346/1/012052.
Asensio-Lozano, J., & Voort, G. vander. 2015. Solutions for Materials Preparation, Testing and Analysis the Al-Si Phase Diagram. www.buehler.com.
Saleh, A. 2018. Effects of Flux Application and Melting Parameters in Investment Casting of Pure Aluminium By In-Situ Melting Technique [Universiti Teknologi Malaysia].
Doi: http://eprints.uthm.edu.my/id/eprint/690.
Logesh, K., Hariharasakthisudhan, P., Arul Marcel Moshi, A., Rajan, B. S., & K, S. 2020. Mechanical Properties and Microstructure of A356 Alloy Reinforced AlN/MWCNT/graphite/Al Composites Fabricated by Stir Casting. Materials Research Express. 7(1): 015004.
Doi: https://doi.org/10.1088/2053-1591/ab587d.
Araoyinbo, A. O., Samuel, A., Abdullah, A. M. M., & Biodun, M. 2022. The Effect of Quenching on High-Temperature Heat TreateMild Steel and Its Corrosion Resistance. Pertanika Journal of Science and Technology. 30(1): 291–302.
Doi: https://doi.org/10.47836/pjst.30.1.16.
Widyantoro, Dhaneswara, D., Fajar Fatriansyah, J., Reza Firmansyah, M., & Prasetyo, Y. 2019. Removal of Oxide Inclusions in Aluminium Scrap Casting Process with Sodium based Fluxes. MATEC Web of Conferences, 269, 07002.
Doi: https://doi.org/10.1051/matecconf/201926907002.
Kim, K. 2014. Formation of Fine Clusters in High-temperature Oxidation of Molten Aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 45(8): 3650–3660.
Doi: https://doi.org/10.1007/s11661-014-2270-9.
Saleh, A., & Idris, M. H. 2015. Oxidation of Pure Aluminium Granules during In-Situ Melting. Advanced Materials Research. 1125: 28–32.
Doi:https://doi.org/10.4028/www.scientific.net/AMR.1125.28.
Kamli, M. R., Srivastava, V., Hajrah, N. H., Sabir, J. S. M., Hakeem, K. R., Ahmad, A., & Malik, M. A. 2021. Facile Bio-Fabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris. Journal of Fungi. 7(1): 62.
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.