EVALUATION OF GEOMETRIC MORPHOMETRIC APPROACH FOR ETHNICITIES DISCRIMINATION USING HANDWRITTEN NUMERAL CHARACTERS
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.21816Keywords:
Forensic science, geometric morphometric, handwritten numeral characters, handwriting, ethnicity discriminationAbstract
Handwriting evidence is a valuable source for authorship identification, an important aspect in investigating crimes such as murder, suicide, illegal drug trafficking, kidnapping, and document forgery. It relies heavily on the examination of written characters that make the document. However, specific studies on the handwritten numeral characters are scarce despite being crucial in assisting investigators in solving crimes. Hence, this study is aimed to gauge the possibility to discriminate authors according to their ethnicities by means of their handwritten numeral characters using a novel Geometric Morphometric (GMM) technique. Handwritten numeral characters collected from 30 individuals from three main different ethnic groups in Malaysia; Malay, Chinese and Indian were first digitised and landmarked using GMM software. Cluster patterns can be observed in the Principal Component Analysis (PCA) score plots, belonging exclusively to the three different ethnic groups. Significant differences (p<0.0001) were discovered in handwritten numerals characters 3, 4, 5, 7 and 9 amongst the three ethnicities when tested using Procrustes ANOVA, which signifying that it is possible to discriminate authors according to their ethnicities using their handwritten numeral characters. However, more sophisticated meta-analyses are needed in order to find the most effective technique for determining and discriminating the author's ethnicity.
References
Cheng, N., Lee, G. K., Yap, B. S., Lee, L. T., Tan, S. K., & Tan, K. P. 2005. Investigation of Class Characteristics in English Handwriting of the Three Main Racial Groups: Chinese, Malay and Indian in Singapore. Journal of Forensic Sciences. 50(1): 1-8. https://doi.org/10.1520/JFS2004005.
Harne, P., Mishra, M. K., & Sodhi, G. S. 2018. Analysis of Handwriting Characteristics Based on Diverse Ethnic Distribution. Analysis of Handwriting Characteristics based on Diverse Ethnic Distribution. 5(2): 1-6. https://www.researchgate.net/publication/328281692%250.
Deepani, V., & Kapoor, A. K. 2018. Variability in Human Handwritings: An Indian Understanding. International Journal of Humanities and Social Sciences (IJHSS). 7(4): 27-32. http://www.iaset.us/view_archives.php.
Shamim, S. M., Miah, M. B. A., Sarker, A., Rana, M., & Jobair, A. Al. 2018. Handwritten Digit Recognition using Machine Learning Algorithms. Indonesian Journal of Science and Technology. 3(1): 29-39. https://doi.org/10.17509/ijost.v3i1.10795.
Bojja, P., Sai, N., Teja, S., Pandala, G. K., & Sharma, S. D. L. R. 2019. Handwritten Text Recognition using Machine Learning Techniques in Application of NLP. International Journal of Innovative Technology and Exploring Engineering. 9(2): 1394-1397. https://doi.org/10.35940/ijitee.a4748.129219.
Klingenberg, C. P. 2016. Size, Shape, and Form: Concepts of Allometry in Geometric Morphometrics. Development Genes and Evolution. 226(3): 113-137. https://doi.org/10.1007/s00427-016-0539-2
Boukharouba, A., & Bennia, A. 2017. Novel Feature Extraction Technique for the Recognition of Handwritten Digits. Applied Computing and Informatics. 13(1): 19-26. https://doi.org/10.1016/j.aci.2015.05.001.
Rao, Z., Zeng, C., Wu, M., Wang, Z., Zhao, N., Liu, M., & Wan, X. 2018. Research on A Handwritten Character Recognition Algorithm based on An Extended Nonlinear Kernel Residual Network. KSII Transactions on Internet and Information Systems. 12(1): 413-435. https://doi.org/10.3837/tiis.2018.01.020.
Biswas, A., & Islam, Md. S. 2021. An Efficient CNN Model for Automated Digital Handwritten Digit Classification. Journal of Information Systems Engineering and Business Intelligence. 7(1): 42. https://doi.org/10.20473/jisebi.7.1.42-55.
Arbain, N. A., Azmi, M. S., Muda, A. K., Muda, N. A., & Radzid, A. R. 2018. Offline Handwritten Digit Recognition using Triangle Geometry Properties. International Journal of Computer Information Systems and Industrial Management Applications. 10: 87-97.
Abdulrazzaq, M. B., & Saeed, J. N. 2019. A Comparison of Three Classification Algorithms for Handwritten Digit Recognition. 2019 International Conference on Advanced Science and Engineering, ICOASE 2019. 46080: 58-63. https://doi.org/10.1109/ICOASE.2019.8723702.
Yahya, A. A., Tan, J., & Hu, M. 2021. A Novel Handwritten Digit Classification System based on Convolutional Neural Network Approach. Sensors. 21(18): 1-26. https://doi.org/10.3390/s21186273.
Adams, D. C., & Otárola-Castillo, E. 2013.. Geomorph: An r Package for the Collection and Analysis of Geometric Morphometric Shape Data. Methods in Ecology and Evolution. 4(4): 393-399. https://doi.org/10.1111/2041-210X.12035.
Savriama, Y. 2018. A Step-by-step Guide for Geometric Morphometrics of Floral Symmetry. Frontiers in Plant Science. 9(October): 1-23. https://doi.org/10.3389/fpls.2018.01433.
Openshaw, G. H., D’Amore, D. C., Vidal-García, M., & Scott Keogh, J. 2017. Combining Geometric Morphometric Analyses of Multiple 2D Observation Views Improves Interpretation of Evolutionary Allometry and Shape Diversification in Monitor Lizard (Varanus) Crania. Biological Journal of the Linnean Society. 120(3): 539-552. https://doi.org/10.1111/bij.12899.
Taufek, W. N. S. W. M., Pritam, H. M. H., Desa, W. N. S. M., & Ismai, D. 2023. Identification of Writers’ Ethnicity using Handwritten Numeral Characters in Combination with Novel Geometric Morphometric (GMM) Technique. AIP Conference Proceedings. 2896(1): 050017. https://doi.org/10.1063/5.0177549.
Huanca Ghislanzoni, L., Lione, R., Cozza, P., & Franchi, L. 2017. Measuring 3D Shape in Orthodontics through Geometric Morphometrics. Progress in Orthodontics. 18(1). https://doi.org/10.1186/s40510-017-0194-9.
Gorgoglione, A., Gregorio, J., Ríos, A., Alonso, J., Chreties, C., & Fossati, M. 2020. Influence of Land Use/land Cover on Surface-water Quality of Santa Lucia River, Uruguay. Sustainability (Switzerland). 12(11). https://doi.org/10.3390/su12114692.
Sanfilippo, P. G., Hewitt, A. W., Mountain, J. A., & Mackey, D. A. 2013. A Geometric Morphometric Assessment of Hand Shape and Comparison to the 2D: 4D Digit Ratio as a Marker of Sexual Dimorphism. Twin Research and Human Genetics. 16(2): 590-600. https://doi.org/10.1017/thg.2013.5.
Yong, R., Ranjitkar, S., Lekkas, D., Halazonetis, D., Evans, A., Brook, A., & Townsend, G. 2018. Three-dimensional (3D) Geometric Morphometric Analysis of Human Premolars to Assess Sexual Dimorphism and Biological Ancestry in Australian Populations. American Journal of Physical Anthropology. 166(2): 373-385. https://doi.org/10.1002/ajpa.23438.
Naeim, M., Asri, M., Hashim, N. H., & Syuhaila, W. N. 2016. Pearson Product Moment Correlation (PPMC) and Principal Component Analysis (PCA) for objective comparison and source determination of unbranded black ballpoint pen inks Pearson Product Moment Correlation (PPMC) and Principal. Australian Journal of Forensic Sciences. 0618(November): 1-19. https://doi.org/10.1080/00450618.2016.1236292.
Todorov, H., Fournier, D., & Gerber, S. 2018. Principal Components Analysis: Theory and Application to Gene Expression Data Analysis. Genomics and Computational Biology. 4(2): 100041. https://doi.org/10.18547/gcb.2018.vol4.iss2.e100041.
Mishra, S. P., Sarkar, U., Taraphder, S., Datta, S., Swain, D. P., Saikhom, R., Panda, S., & Laishram, M. 2017. Multivariate Statistical Data Analysis- Principal Component Analysis (PCA). International Journal of Livestock Research. 7(5): 60-78. https://doi.org/10.5455/ijlr.20170415115235.
Courtenay, L. A., Maté-González, M. ángel, Aramendi, J., Yravedra, J., González-Aguilera, D., & Domínguez-Rodrigo, M. 2018. Testing Accuracy in 2D and 3D Geometric Morphometric Methods for Cut Mark Identification and Classification. PeerJ. 2018(7). https://doi.org/10.7717/peerj.5133.
Nazri, A., Agbolade, O., Yaakob, R., Ghani, A. A., & Cheah, Y. K. 2020. A Novel Investigation of the Effect of Iterations in Sliding Semi-landmarks for 3D Human Facial Images. BMC Bioinformatics. 21(1): 1-10. https://doi.org/10.1186/s12859-020-3497-7.
Otárola-Castillo, E., Torquato, M. G., Hawkins, H. C., James, E., Harris, J. A., Marean, C. W., McPherron, S. P., & Thompson, J. C. 2018. Differentiating between Cutting Actions on Bone using 3D Geometric Morphometrics and Bayesian Analyses with Implications to Human Evolution. Journal of Archaeological Science. 89: 56-67. https://doi.org/10.1016/j.jas.2017.10.004.
Tian, Z., Zhai, X., van Steenpaal, G., Yu, L., Dimara, E., Espadoto, M., & Telea, A. 2021. Quantitative and Qualitative Comparison of 2d and 3d Projection Techniques for High-dimensional Data. Information (Switzerland), 12(6): 1-21. https://doi.org/10.3390/info12060239.
Courtenay, L. A., Maté-González, M. ángel, Aramendi, J., Yravedra, J., González-Aguilera, D., & Domínguez-Rodrigo, M. 2018. Testing Accuracy in 2D and 3D Geometric Morphometric Methods for Cut Mark Identification and Classification. PeerJ. 2018(7). https://doi.org/10.7717/peerj.5133.
Jollife, I. T., & Cadima, J. 2016. Principal Component Analysis: A Review and Recent Developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/rsta.2015.0202.
Viscosi, V., & Cardini, A. 2011. Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners. PLoS ONE. 6(10). https://doi.org/10.1371/journal.pone.0025630.
Hoogervorst, T. G. 2015. Tracing the Linguistic Crossroads between Malay and Tamil. Wacana. 16(2): 249-283.
Winskel, H. 2020. Learning to Read in Multilingual Malaysia: A Focus on Bahasa Melayu, Tamil and Chinese. GEMA Online Journal of Language Studies. 20(1): 1-15. https://doi.org/10.17576/gema-2020-2001-01.
Gannetion, L., Wong, K. Y., Lim, P. Y., Chang, K. H., & Abdullah, A. F. L. 2022. An Exploratory Study on the Handwritten Allographic Features of Multi-ethnic Population with Different Educational Backgrounds. PLoS ONE. 17(10). https://doi.org/10.1371/journal.pone.0268756.
O’Brien, B. A., Mohamed, M. B. H., Yussof, N. T., & Ng, S. C. 2018. The Phonological Awareness Relation to Early Reading in English for Three Groups of Simultaneous Bilingual Children. Reading and Writing. 32(4): 909-937. https://doi.org/10.1007/s11145-018-9890-1.
Ajanović, Z., Ajanović, U., Dervišević, L., Hot, H., Voljevica, A., Talović, E., Dervišević, E., Hašimbegović, S., & Sarač-Hadžihalilović, A. 2023. A Geometric Morphometrics Approach for Sex Estimation Based on the Orbital Region of Human Skulls from Bosnian Population. Scanning. 2023: 1-9.
Shin, J. Y., Alias, A., Chung, E., Ng, W. L., Wu, Y. S., Gan, Q. F., Thu, K. M., & Choy, K. W. 2021. Identification of Race: A Three-dimensional Geometric Morphometric and Conventional Analysis of Human Fourth Cervical Vertebrae in Adult Malaysian Population. Journal of Clinical and Health Sciences. 6(1 (Special issue)): 17. https://doi.org/10.24191/jchs.v6i1(special).13167.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.