SEMI-BATCH EXPERIMENTAL STUDY ON MULTIPLE CARBON DIOXIDE BUBBLES ABSORPTION IN SWEETENER SOLUTION UNDER VARYING PRESSURES
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.21884Keywords:
Carbon dioxide absorption, Bubble column, Gas diffuser, Volumetric mass transfer coefficients, Box–Behnken designAbstract
Increasing the absorbed carbon dioxide amount in sweetener solution is a new trend to modify soft drinks. This research investigated the optimum increase in absorbed carbon dioxide within the limits of permissible food specifications in the bubble column. Response surface methodology (RSM) utilizing the Box Behnken design (BBD) was used to conduct experiments operating conditions for achieving desired responses within specified ranges of pressure (2-4 bar), temperature (5-25°C), gas flow rate (0.2–0.4 L/min), and absorbent concentration (0–150 g/L). The experimentally obtained results were fitted to a second-order polynomial model—the increase in pressure and gas flow rate results in an increase in absorption yield (YCO2). Also, increasing the gas flow rate and temperature will increase the volumetric mass transfer coefficient (KLa), while, at high pressure and pore size KLa will be reduced. According to the obtained results at optimum conditions, 4 bar, 5°C, gas flow rate 0.4 L/min, sucrose concentration of 0 g/L, and pore diffuser 0.5 μm; The CO2 content (YCO2) was 8.34 g/L. The optimum conditions for combining the effect of high CO2 content (6.125 g/L) and best KLa value (0.1043 L/min) were: 2.83 bar, 5 °C, a gas flow rate of 0.4 L/min, a sucrose concentration of 65.15 g/L, and pore diffuser of 0.5 μm.
References
Sujan, A., Vyas, R. K., Singh, K. 2018. Estimation of Liquid‐side Mass Transfer Coefficient and Liquid Film Thickness in a Bubble Column using Single Spherical Bubble Model. Asia‐Pacific J Chem Eng. 13(2): e2178.
Devakumar, D., Saravanan, K., Kannadasan, T. et al. 2010. Mass Transfer Coefficient Studies in Bubble Column Reactor. Mod. Appl. Sci. 4(7): 65.
Akita, K., Yoshida, F. 1974. Bubble Size, Interfacial Area, and Liquid-phase Mass Transfer Coefficient in Bubble Columns. Ind Eng Chem Process Des. Dev. 13(1): 84-91.
Hikita, H., Asai, S., Tanigawa, K., et al. 1981. The Volumetric Liquid-phase Mass Transfer Coefficient in Bubble Columns. Chem Eng J Elsevier. 22(1): 61-69.
Hammer, H. 1984. New Subfunctions on Hydrodynamics, Heat and Mass Transfer for Gas/Liquid and Gas/Liquid/Solid Chemical and Biochemical Reactors. Front. Chem. Reac. Eng. 464-74.
Abe, S., Okawa, H., Hosokawa, S., et al. 2008. Dissolution of a Carbon Dioxide Bubble in a Vertical Pipe. J. Fluid Sci. Technol. 3(5): 667-77.
Calderbank, P. H., Lochiel, A. C. 1964. Mass transfer Coefficients, Velocities and Shapes of Carbon Dioxide Bubbles in Free Rise through Distilled Water. Chemical Engineering Science. 19(7): 485–503.
Doi: http://dx.doi.org/10.1016/0009-2509(64)85075-2.
Al-mashhadani, M. K. H., Wilkinson, S. J., Zimmerman, W. B. 2016. Carbon Dioxide Rich Microbubble Acceleration of Biogas Production in Anaerobic Digestion. Chem Eng Sci. 156: 24-35.
Doi: http://dx.doi.org/10.1016/j.ces.2016.09.011.
Mahmood, R. S., Alsarayreh, A. A., Abbas, A. S. 2023. Measurement and Analysis of Bubble Size Distribution in the Electrochemical Stirred Tank Reactor. Iraqi J. Chem. Pet. Eng. 24(1): 27-31.
Waisi, B. I., Majeed, J. T., Majeed, N. S. 2021. Carbon Dioxide Capture using Nonwoven Activated Carbon Nanofiber. IOP Conference Series: Earth and Environmental Science 2021. IOP Publishing.
Majeed, N. S., Majeed, J. T. 2017. Study the Performance of Nanozeolite NaA on CO2 Gas Uptake. Iraqi J. Chem. Pet. Eng. 18(2): 57-67.
Teramoto, M., Tai, S., Nishii, K., et al. 1974. Effects of Pressure on Liquid-phase Mass Transfer Coefficients. Chem. Eng. J. 8(3): 223-26.
Alvarez, E., Correa, J. M., Navaza, J. M., et al. 2001. Theoretical Prediction of the Mass Transfer Coefficients in Bubble Columns Operating in Churn-turbulent Flow Regime. Study in Newtonian and non-Newtonian Fluids under Different Operation Conditions. Heat Mass Transf. 37(4-5): 343-50.
Zhu, D., Fang, M., Zhong, L., et al. 2011. Semi-batch Experimental Study on CO2 Absorption Characteristic of Aqueous Ammonia. Energy Procedia. 4: 156-63.
Alvarez, E., Cancela, M. A., Navaza, J. M., et al. 2002. Mass Transfer Coefficients in Batch and Continuous Regime in a Bubble Column. Proc. Intl. Conference on Distillation and Absorption (Baden-Baden, Germany 2002.
Cho, H. J., Choi, J. 2019. Calculation of the Mass Transfer Coefficient for the Dissolution of Multiple Carbon Dioxide Bubbles in Sea Water under Varying Conditions. J Mar Sci Eng. 7(12).
Doi: http://dx.doi.org/10.3390/JMSE7120457.
Álvarez, E., Sanjurjo, B., Cancela, A., et al. 2000. Mass Transfer and Influence of Physical Properties of Solutions in a Bubble Column. Chem. Eng. Res. Des. 78(6): 889-93.
Wilkinson, P. M., Haringa, H., Dierendonck, L. L. Van. 1994. Mass Transfer and Bubble Size in a Bubble Column under Pressure. Chem. Eng. Scil. 49(9): 1417-27.
Idogawa, K., Ikeda, K., Fukuda, T., et al. 1987. Formation and Flow of Gas Bubbles in a Pressurized Bubble Column with a Single Orifice or Nozzle Gas Distributor. Chem. Eng. Commun. 59(1-6): 201-12.
Al-Hemiri, A. A., Salih, S. A. 2007. Prediction of Mass Transfer Coefficient in Bubble Column using Artificial Neural Network. Journal of Engineering.
Rastegar, Z., Ghaemi, A. 2022. CO2 Absorption into Potassium Hydroxide Aqueous Solution: Experimental and Modeling. Heat Mass Transf. 58(3): 365-81.
Al-Hemiri, A. A., Selman, M. D. 2011. Estimation of Mass Transfer Coefficients in a Packed Distillation Column using Batch Mode. Iraqi J Chem Pet Eng. 12(1): 13-21.
Dhuyool, A. W., Shakir, I. K. 2023. Carbon Dioxide Capturing via a Randomly Packed Bed Scrubber Using Primary and Poly Amine Absorbents. J Ecol Eng. 24(11): 14-29.
Doi: http://dx.doi.org/10.12911/22998993/170205.
Atiya, Z. Y. 2012. Estimation of Volumetric Mass Transfer Coefficient in Bioreactor. Al-Khwarizmi Eng. J. 8(3): 75-80.
Olsen, J. E., Dunnebier, D., Davies, E., et al. 2017. Mass Transfer between Bubbles and Seawater. Chem Eng Sci Elsevier. 161: 308-15.
Myers, R. H., Montgomery, D. C., Vining, G. G, et al. 2004. Response Surface Methodology: A Retrospective and Literature Survey. J Qual Technol. 36(1): 53.
Baş, D., Boyacı, İ. H. 2007. Modeling and Optimization I: Usability of Response Surface Methodology. J. Food Eng. 78(3): 836-45.
Amiri, M., Shahhosseini, S., Ghaemi, A. 2017. Optimization of CO2 Capture Process from Simulated Flue Gas by Dry Regenerable Alkali Metal Carbonate-based Adsorbent using Response Surface Methodology. Energy & Fuels. 5: 5286-96.
Mohammad, N. K., Ghaemi, A., Tahvildari, K. 2019. Hydroxide Modified Activated Alumina as an Adsorbent for CO2 Adsorption: Experimental and Modeling. Int. J. Greenh Gas Control. 88: 24-37.
Saeidi, M., Ghaemi, A., Tahvildari, K., et al. 2018. Exploiting Response Surface Methodology (RSM) as a Novel Approach for the Optimization of Carbon Dioxide Adsorption by Dry Sodium Hydroxide. J. Chinese Chem. Soc. 65(12): 1465-75.
Almoslh, A., Alobaid, F., Heinze, C., et al. 2020. Influence of Pressure on Gas/liquid Interfacial Area in a Tray Column. Appl. Sci. 10(13): 4617.
Wang, B., Lu, X., Tao, S., et al. 2021. Preparation and Properties of CO2 Micro-nanobubble Water based on Response Surface Methodology. Appl. Sci. 11(24): 11638.
Descoins, C., Mathlouthi, M., Moual, M. Le, et al. 2006. Carbonation Monitoring of Beverage in a Laboratory Scale Unit with on-line Measurement of Dissolved CO2. Food Chem. 95(4): 541-53.
Diamond, L. W., Akinfiev, N. N. 2003. Solubility of CO2 in Water from− 1.5 to 100 C and from 0.1 to 100 MPa: Evaluation of Literature Data and Thermodynamic Modelling. Fluid Phase Equilib. 208(1-2): 265-90.
Tokumura, M., Baba, M., Kawase, Y. 2007. Dynamic Modeling and Simulation of Absorption of Carbon Dioxide into Seawater. Chem. Eng. Sci. 62(24): 7305-11.
Martínez, I., Casas, P. A. 2012. Simple Model for CO2 Absorption in a Bubbling Water Column. Brazilian J. Chem. Eng. SciELO Brasil. 29: 107-11.
Rumpf, B., Xia, J., Maurer, G. 1998. Solubility of Carbon Dioxide in Aqueous Solutions Containing Acetic Acid or Sodium Hydroxide in the Temperature Range from 313 to 433 K and at Total Pressures up to 10 MPa. Ind Eng Chem Res. 37(5): 2012-19.
Yincheng, G., Zhenqi, N., Wenyi, L. 2011. Comparison of Removal Efficiencies of Carbon Dioxide between Aqueous Ammonia and NaOH Solution in a Fine Spray Column. Energy Procedia. 4: 512-18.
Yoo, M., Han, S-J., Wee, J-H. 2013. Carbon Dioxide Capture Capacity of Sodium Hydroxide Aqueous Solution. J. Environ. Manage. 114: 512-19.
Mourabet, M., Rhilassi, A. El, Boujaady, H. El, et al. 2017. Use of Response Surface Methodology for Optimization of Fluoride Adsorption in an Aqueous Solution by Brushite. Arab J. Chem. 10: S3292-302.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., et al. 2008. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta. 76(5): 965-77.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.