Effect of Different Types of Microporous Layer Toward the Performance of Direct Formic Acid Fuel Cell

Authors

  • Norraihanah Mohamed Aslam Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Mohd Shahbudin Masdar Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Siti Kartom Kamarudin Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v65.2189

Keywords:

Gas diffusion layer, microporous layer, anode electrode, DFAFC

Abstract

Typical electrodes of anode and cathode are supported on macroporous backing layer with additional microporous carbon layer. The effect of the gas diffusion layer (GDL) on the cell performance in a direct formic acid fuel cell (DFAFC) has been characterized.  The performance of DFAFC might be hindered by mass transfer limitation due to hydrophilicity properties of the formic acid. By measuring the contact angle and SEM photograph, the physicochemical and surface morphology of different types of GDL can be classified. Meanwhile, the effects of carbon materials such as carbon black, carbon nanofibre and carbon nanotube as a microporous layer on the backing layer of carbon paper were investigated on the basis of the characterization and the performance. From the results, it was obtained that CNF was a good material as microporous layer due to the properties of in plane conductivity, high current in cyclic voltammetry and also had smoother surface on the morphology test.

References

Agnolucci, P. 2007. Economics and Market Prospects of Portable Fuel Cells. International Journal of Hydrogen Energy. 32(17): 4319–4328.

Basri, S., Kamarudin, S. K., Daud, W. R. W. & Ahmad, M. M. 2010. Non-Linear Optimization of Passive Direct Methanol Fuel Cell (Dmfc). International Journal of Hydrogen Energy. 35(4): 1759–1768.

Cai, W., Liang, L., Zhang, Y., Xing, W. & Liu, C. 2013. Real Contribution of Formic Acid in Direct Formic Acid Fuel Cell: Investigation of Origin and Guiding for Micro Structure Design. International Journal of Hydrogen Energy. 38(1): 212–218.

Chen, W.-H., Ko, T.-H., Lin, J.-H., Liu, C.-H., Shen, C.-W. & Wang, C.-H. 2011. Influences of Gas Diffusion Layers with Pitch-Based Carbon Coated in Polymer Electrolyte Membrane Fuel Cell. International Journal of Electrochemical Science. 6: 2192–2200.

Gao, Y., Sun, G. Q., Wang, S. L. & Zhu, S. 2010. Carbon Nanotubes Based Gas Diffusion Layers in Direct Methanol Fuel Cells. Energy. 35(3): 1455–1459.

Jordan, L. R., Shukla, A. K., Behrsing, T., Avery, N. R., Muddle, B. C. & Forsyth, M. 2000. Diffusion Layer Parameters Influencing Optimal Fuel Cell Performance. Journal of Power Sources. 86(1–2): 250–254.

Kamarudin, S. K., Achmad, F. & Daud, W. R. W. 2009. Overview on the Application of Direct Methanol Fuel Cell (Dmfc) for Portable Electronic Devices. International Journal of Hydrogen Energy. 34(16): 6902–6916.

Kamarudin, S. K., Daud, W. R. W., Ho, S. L. & Hasran, U. A. 2007. Overview on the Challenges and Developments of Micro-Direct Methanol Fuel Cells (Dmfc). Journal of Power Sources. 163(2): 743–754.

Kim, S., Han, J., Kwon, Y., Lee, K. S., Lim, T. H., Nam, S. W. & Jang, J. H. 2011. Effect of Nafion Ionomer and Catalyst in Cathode Layers for the Direct Formic Acid Fuel Cell with Complex Capacitance Analysis on the Ionic Resistance. Electrochimica Acta. 56(23): 7984–7990.

Lamy, C., Lima, A., Lerhun, V., Delime, F., Coutanceau, C. & Léger, J.-M. 2002. Recent Advances in the Development of Direct Alcohol Fuel Cells (Dafc). Journal of Power Sources. 105(2): 283–296.

Litster, S. & Mclean, G. 2004. Pem Fuel Cell Electrodes. Journal of Power Sources. 130(1–2): 61–76.

Lobato, J., Cañizares, P., Rodrigo, M., Ruiz-López, C. & Linares, J. 2008. Influence of the Teflon Loading in the Gas Diffusion Layer of Pbi-Based Pem Fuel Cells. Journal of Applied Electrochemistry. 38(6): 793–802.

MarinÅ¡ek, M., Å ala, M. & JanÄar, B. 2013. A Study Towards Superior Carbon Nanotubes-Supported Pd-Based Catalysts for Formic Acid Electro-Oxidation: Preparation, Properties and Characterisation. Journal of Power Sources. 235(0): 111–116.

Mikołajczuk, A., Borodzinski, A., Kedzierzawski, P., Stobinski, L., Mierzwa, B. & Dziura, R. 2011. Deactivation of Carbon Supported Palladium Catalyst in Direct Formic Acid Fuel Cell. Applied Surface Science. 257(19): 8211–8214.

Morgan, R. D., Haan, J. L. & Masel, R. I. 2010. Effects of Nafion Loading in Anode Catalyst Inks on the Miniature Direct Formic Acid Fuel Cell. Journal of Power Sources. 195(19): 6405–6410.

Park, S., Lee, J.-W. & Popov, B. N. 2006. Effect of Carbon Loading in Microporous Layer on Pem Fuel Cell Performance. Journal of Power Sources. 163(1): 357.

Park, S., Lee, J.-W. & Popov, B. N. 2008. Effect of Ptfe Content in Microporous Layer on Water Management in Pem Fuel Cells. Journal of Power Sources. 177(2): 457.

Rees, N. & Compton, R. 2011. Sustainable Energy: A Review of Formic Acid Electrochemical Fuel Cells. Journal of Solid State Electrochemistry. 15(10): 2095–2100.

Rhee, Y.-W., Ha, S. Y. & Masel, R. I. 2003. Crossover of Formic Acid through Nafion® Membranes. Journal of Power Sources. 117(1–2): 35–38.

Shuxian Zhang, Ming Qing, Hui Zhang & Tian, Y. 2009. Electrocatalytic Oxidation of Formic Acid on Functional Mwcnts Supported Nanostructured Pd–Au Catalyst. Electrochemistry Communications. 11: 2249–2252.

Srinivasan, S. & Kirby, B. 2006. Status of Fuel Cell Technologies, Fuel Cells. Dlm. (pnyt.). Springer US. 441–573.

Sundarrajan, S., Allakhverdiev, S. I. & Ramakrishna, S. 2012. Progress and Perspectives in Micro Direct Methanol Fuel Cell. International Journal of Hydrogen Energy. 37(10): 8765–8786.

Uhm, S., Kwon, Y., Chung, S. T. & Lee, J. 2008. Highly Effective Anode Structure in a Direct Formic Acid Fuel Cell. Electrochimica Acta. 53(16): 5162–5168.

Uhm, S., Lee, J. K., Chung, S. T. & Lee, J. 2008. Effect of Anode Diffusion Media on Direct Formic Acid Fuel Cells. Journal of Industrial and Engineering Chemistry 14(4): 493-498.

Uhm, S., Lee, H., Kwon, Y. And Lee, J. 2008. A Stable and Cost-Effective Anode Catalyst Structure for Formic Acid Fuel Cells. Angewandte Chemie International Edition. 47: 10163–10166.

Vigier, F., Rousseau, S., Coutanceau, C., Leger, J.-M. & Lamy, C. 2006. Electrocatalysis for the Direct Alcohol Fuel Cell. Topics in Catalysis. 40(1): 111–121.

Weber, A. Z. & Newman, J. 2005. Effects of Microporous Layers in Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society. 152(4): A677.

Winjobi, O., Zhang, Z., Liang, C. & Li, W. 2010. Carbon Nanotube Supported Platinum–Palladium Nanoparticles for Formic Acid Oxidation. Electrochimica Acta. 55(13): 4217–4221.

Zainoodin, A. M., Kamarudin, S. K. & Daud, W. R. W. 2010. Electrode in Direct Methanol Fuel Cells. International Journal of Hydrogen Energy. 35(10): 4606–4621.

Zhang, H., Wang, X., Zhang, J. & Zhang, J. 2008. Conventional Catalyst Ink, Catalyst Layer and Mea Preparation.

Pem Fuel Cell Electrocatalysts and Catalyst Layers. Dlm. Zhang, J. (pnyt.). Springer London. 889–916.

Downloads

Published

2013-10-15

Issue

Section

Science and Engineering

How to Cite

Effect of Different Types of Microporous Layer Toward the Performance of Direct Formic Acid Fuel Cell. (2013). Jurnal Teknologi, 65(2). https://doi.org/10.11113/jt.v65.2189