BOUNDARY LAYER STAGNATION-POINT FLOW OF FERROFLUID WITH DUST PARTICLES AND VISCOUS DISSIPATION

Authors

  • Cik Siti Hajar Abdulah Institute of Engineering Mathematics, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
  • Rohana Abdul Hamid ᵃInstitute of Engineering Mathematics, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia ᵇCentre of Excellence for Social Innovation and Sustainability (CoESIS), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
  • Roslinda Mohd Nazar Department of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.21913

Keywords:

Boundary layer, dusty fluid, stagnation-point, ferrofluid, viscous dissipation

Abstract

This work aims to evaluate the impact of ferrofluid containing dust particles and the presence of viscous dissipation on the boundary layer over a moving surface. The base fluids considered are kerosene and water, with ferroparticles of magnetite and cobalt ferrite. Ordinary differential equations (ODEs) were obtained by utilizing similarity transformations to change the governing equations of the boundary layer. The modified equations were subsequently solved numerically using the bvp4c solver integrated in MATLAB. The results of velocity profile, temperature profile, skin friction coefficient, including local Nusselt number were both presented in table and graphic formats. This study reveals that the ferrofluid phase as well as dust particle velocity decreases with decreases in the volume fraction of solid ferroparticles on a stretched surface. When the surface is shrinking, the velocities of both the ferrofluid and dust phases decrease with the reduction in the volume fraction of solid ferroparticles. The heat transfer rate in the kerosene-based fluid is higher when using the dusty cobalt ferrite ferrofluid compared to the water base fluid.

References

R. G. Harrison et al. 2016. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity. Space Sci. Rev. 203(1–4): 299–345. Doi: 10.1007/s11214-016-0241-8.

Nurul Aisyah Johan and Syahira Mansur. 2021. Boundary Layer Flow of Dusty Nanofluid over Stretching Sheet with Partial Slip Effects. J. Adv. Res. Fluid Mech. Therm. Sci. 87(2): 118–126. Doi: 10.37934/arfmts.87.2.118126.

S. Manjunatha, B. J. Gireesha, and C. S. Bagewadi. 2018. Effect of Thermal Radiation on Boundary Layer Flow and Heat Transfer of Dusty Fluid Over an Unsteady Stretching Sheet. Int. J. Eng. Sci. Technol. 4(4). Doi: 10.4314/ijest.v4i4.5.

N. F. M. S, A. A, S. M, R. M., and N. A. J. 2018.Boundary Layer of a Dusty Fluid Flow Over A Stretching Sheet. Int. J. Eng. Technol. 7(4.30): 462. Doi: 10.14419/ijet.v7i4.30.22368.

B. C. Prasannakumara, N. S. Shashikumar, and M. Archana. 2018. Three-dimensional Boundary Layer Flow and Heat Transfer of a Dusty Fluid Towards a Stretching Sheet with Convective Boundary Conditions. J. Comput. Appl. Res. Mech. Eng. 8(1): 25–38. Doi: 10.22061/jcarme.2017.2401.1227.

N. Gajjela and R. Nandkeolyar. 2021. Investigating the Magnetohydrodynamic Flow of a Couple Stress Dusty Fluid along a Stretching Sheet in the Presence of Viscous Dissipation and Suction. Heat Transf. 50(3). Doi: 10.1002/htj.22001.

A. S. T. Boots, L. E. Krijgsman, B. J. M. de Ruiter, S. G. E. Lampaert, and J. W. Spronck. 2019. Increasing the Load Capacity of Planar Ferrofluid Bearings by the Addition of Ferromagnetic Material. Tribol. Int. 129(July): 46–54. Doi: 10.1016/j.triboint.2018.07.048.

G. S. Park and K. Seo. 2004. New Design of the Magnetic Fluid Linear Pump to Reduce the Discontinuities of the Pumping Forces. IEEE Trans. Magn. 40(2): 916–919. Doi: 10.1109/TMAG.2004.824718.

O. Oehlsen, S. I. Cervantes-Ramírez, P. Cervantes-Avilés, and I. A. Medina-Velo. 2022. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. ACS Omega. 7(4): 3134–3150. Doi: 10.1021/acsomega.1c05631.

Y. P. Klein, L. Abelmann, and H. Gardeniers. 2022. Ferrofluids to Improve Field Homogeneity in Permanent Magnet Assemblies. J. Magn. Magn. Mater. 555(March): 169371. Doi: 10.1016/j.jmmm.2022.169371.

B. Jalili, S. Sadighi, P. Jalili, and D. D. Ganji. 2019. Characteristics of Ferrofluid Flow Over a Stretching Sheet with Suction and Injection. Case Stud. Therm. Eng. 14. Doi: 10.1016/j.csite.2019.100470.

O. D. Makinde. 2018. Stagnation Point Flow with Heat Transfer and Temporal Stability of Ferrofluid Past a Permeable Stretching/shrinking Sheet. Defect Diffus. Forum. 387: 510–522. Doi: 10.4028/www.scientific.net/DDF.387.510.

R. A. Hamid, R. Nazar, K. Naganthran, and I. Pop. 2022. Dusty Ferrofluid Transport Phenomena Towards a Non-isothermal Moving Surface with Viscous Dissipation. Chinese J. Phys. 75. Doi: 10.1016/j.cjph.2021.11.002.

B. J. Gireesha, A. J. Chamkha, N. G. Rudraswamy, and M. R. Krishnamurthy. 2014. MHD Flow and Heat Transfer of a Nanofluid Embedded with Dust Particles Over a Stretching Sheet. J. Nanofluids. 4(1): 66–72. Doi: 10.1166/jon.2015.1126.

S. M. Isa, A. Ali, and S. Shafie. 2016. Stagnation Point Flow of MHD Dusty Fluid Toward Stretching Sheet with Convective Surface. J. Teknol. 78(3–2): 95–100. Doi: 10.11113/jt.v78.7820.

S. H. M. Yasin, M. K. A. Mohamed, Z. Ismail, and M. Z. Salleh. 2021. Magnetohydrodynamic Effects in Mixed Convection of Ferrofluid Flow at Lower Stagnation Point on Horizontal Circular Cylinder. J. Adv. Res. Fluid Mech. Therm. Sci. 86(1). Doi: 10.37934/arfmts.86.1.5263.

M. R. Mohaghegh and A. B. Rahimi. 2016. Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Dusty Fluid Toward a Stretching Sheet. J. Heat Transfer. 138(11): 1–12. Doi: 10.1115/1.4033614.

G. K. Ramesh, B. J. Gireesha, and C. S. Bagewadi. 2014. Stagnation Point Flow of a MHD Dusty Fluid Towards a Stretching Sheet with Radiation. Afrika Mat. 25(1): 237–249. Doi: 10.1007/s13370-012-0114-6.

A. M. Rashad. 2017. Impact of Anisotropic Slip on Transient Three Dimensional MHD Flow of Ferrofluid Over an Inclined Radiate Stretching Surface. J. Egypt. Math. Soc. 25: 230–237. Doi: 10.1016/j.jmmm.2016.08.056.

G. K. Ramesh, B. J. Gireesha, and R. S. R. Gorla. 2015. Boundary Layer Flow Past a Stretching Sheet with Fluid-particle Suspension and Convective Boundary Condition. Heat Mass Transf. 51(8): 1061–1066. Doi: 10.1007/s00231-014-1477-z.

M. Jalil, S. Asghar, and S. Yasmeen. 2017. An Exact Solution of MHD Boundary Layer Flow of Dusty Fluid over a Stretching Surface. Math. Probl. Eng. 2017. Doi: 10.1155/2017/2307469.

T. Hayat, S. Qayyum, M. Imtiaz, F. Alzahrani, and A. Alsaedi. 2016. Partial Slip Effect in Flow of Magnetite-Fe3O4 Nanoparticles between Rotating Stretchable Disks. J. Magn. Magn. Mater. 413: 39–48. Doi: 10.1016/j.jmmm.2016.04.025.

S. Zainodin, A. Jamaludin, R. Nazar, and I. Pop. 2022. MHD Mixed Convection of Hybrid Ferrofluid Flow over an Exponentially Stretching/Shrinking Surface with Heat Source/Sink and Velocity Slip. Mathematics. 10(23): 1–21. Doi: 10.3390/math10234400.

Downloads

Published

2025-06-13

Issue

Section

Science and Engineering

How to Cite

BOUNDARY LAYER STAGNATION-POINT FLOW OF FERROFLUID WITH DUST PARTICLES AND VISCOUS DISSIPATION. (2025). Jurnal Teknologi (Sciences & Engineering), 87(4), 663-675. https://doi.org/10.11113/jurnalteknologi.v87.21913