DESIGN OF MULIFREQUENCY ELECTRICAL IMPEDANCE TOMOGRAPHY (MfEIT) BASED ON ANALOG DISCOVERY TO DETECT BREAST CANCER
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.21921Keywords:
Multi frequency, electrical impedance, tomography, analog discovery, breast cancerAbstract
This study aims to design Multifrequency Electrical Impedance Tomography (MfEIT) based on Analog Discovery to detect breast cancer. The MfEIT was built from Analog Discovery which can be used as a signal generator, power supply, voltage control and measuring voltage and phase difference. Other complementary modules are Multiplexer, Instrument amplifier, Voltage Constant Current Source (VCCS), and High Pass Filter (HPF). The MfEIT performance test was carried out on a phantom object made of agar with a certain conductivity that represents breast and cancer tissue. The MfEIT performance testing at a frequency of 10 kHz, 40 kHz, and 80 kHz. The reconstruction from both potential and phase difference data, it shown that are in accordance with the phantom condition, both in number, size and position of anomalies. The reconstruction from the voltage data shown fine at all frequencies, but the phase data produces a good reconstruction image when frequencies was less than 80 kHz.
References
Hero, S. K. 2021. Faktor Resiko Kanker Payudara. Jurnal Medika Hutama. 03(01): 1533-1537. [Online]. Available: https://jurnalmedikahutama.com/index.php/JMH/article/view/310/212.
Fass L. 2008. Imaging and Cancer: A Review. Moecular Oncoogyl. 2(2): 115-152. Doi: 10.1016/j.molonc.2008.04.001.
American Cancer Society. 2021. About Breast Cancer. https://www.cancer.org/content/dam/CRC/PDF/Public/8577.00.pdf (accessed Sep. 21, 2023).
Widyawati. 2022. Kanker Payudara Paling Banyak di Indonesia, Kemenkes Targetkan Pemerataan Layanan Kesehatan. Ministry of Health. https://sehatnegeriku.kemkes.go.id/baca/umum/20220202/1639254/kanker-payudaya-paling-banyak-di-indonesia-kemenkes-targetkan-pemerataan-layanan-kesehatan/ (accessed Sep. 25, 2023).
Karellas, A. and Vedantham, S. 2008. Breast Cancer Imaging: A Perspective for the Next Decade. Med. Phys. 35(11): 4878-4897. Doi: 10.1118/1.2986144.
Jaglan, P., Dass, R. and Duhan, M. 2019. Breast Cancer Detection Techniques: Issues and Challenges. J. Inst. Eng. Ser. B. 100(4): 379-386. Doi: 10.1007/s40031-019-00391-2.
Zavare, M. A. and Latiff, L. A. 2015. Electrical Impedance Tomography as a Primary Screening Technique for Breast Cancer Detection. Asian Pacific J. Cancer Prev. 16(14): 5595–5597. Doi: 10.7314/APJCP.2015.16.14.5595.
Chakraborti, D. K. L. and Selvamurthy, D. W. 2010. Clinical Application of Electrical Impedance Tomography in the Present Health Scenario of India. J. Phys. Conf. Ser. 224: 012069. Doi: 10.1088/1742-6596/224/1/012069.
Zain, N. M. and Chelliah, K. K. 2014. Breast Imaging Using Electrical Impedance Tomography: Correlation of Quantitative Assessment with Visual Interpretation. Asian Pacific J. Cancer Prev. 15(3): 1327-1331. Doi: 10.7314/APJCP.2014.15.3.1327.
Disha, E.D., Kërliu, S.M., Ymeri, H. and Kutllovci, A. 2009. Comparative Accuracy of Mammography and Ultrasound in Women with Breast Symptoms According to Age and Breast Density. Bosn. J. Basic Med. Sci. 9(2): 131-136. Doi: 10.17305/bjbms.2009.2832.
Zarafshani, A., Huber, N., Beqo, N., Tunstall, B., Sze, G., Chatwin, C. And Wang, W. 2010. A Flexible Low-cost, High-precision, Single Interface Electrical Impedance Tomography System for Breast Cancer Detection using FPGA. J. Phys. Conf. Ser. 224: 012169. Doi: 10.1088/1742-6596/224/1/012169.
Khan, T. A. and Ling, S. H. 2019. Review on Electrical Impedance Tomography: Artificial Intelligence Methods and its Applications. Algorithms. 12(5): 88. Doi: 10.3390/a12050088.
Wu, H., Zhou, W., Yang, Y., Jia, J. and Bagnaninchi, P. 2018. Exploring the Potential of Electrical Impedance Tomography for Tissue Engineering Applications. Materials (Basel). 11(6): 930. Doi: 10.3390/ma11060930.
Saulnier, G. J., Blue, R. S. , Newell, J. C., Isaacson, D. and Edic, P. M. 2001. Electrical Impedance Tomography. IEEE Signal Process. Mag. 18(6): 31-43. Doi: 10.1109/79.962276.
Lee, E., Erdene, M., Seo, J. K. and Woo, E. J. 2012. Breast EIT using a New Projected Image Reconstruction Method with Multi-frequency Measurements. Physiol. Meas. 33(5): 751-765. Doi: 10.1088/0967-3334/33/5/751.
Qiao, G., Wang, W., Wang, L., He, Y., Bramer, B. and Al-Akaidi, M. Investigation of Biological Phantom for 2D and 3D Breast EIT images. 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, 2007. 328-331. Doi: 10.1007/978-3-540-73841-1_86.
Pennati, F., Angelucci, A., Morelli, L., Bandini, S., Barzanti, E., Cavallini, F., Conelli, A., Federico, G., Paganelli, C. And Aliverti, A. 2023. Electrical Impedance Tomography: From the Traditional Design to the Novel Frontier of Wearables. Sensors. 23(3): 1182. Doi: 10.3390/s23031182.
Zain, N. M., Kanaga, K. C., Sharifah, M. I. A., Suraya, A. and Latar, N. H. 2014. Study of Electrical Impedance Tomography as a primary screening technique for breast cancer. 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES). 220-224. Doi: 10.1109/IECBES.2014.7047490.
Juliana, N., Shahar, S., Chelliah, K. K., Ghazali, A. R., Osman, F. and Sahar, M. A. 2014. Validation of Electrical Impedance Tomography Qualitative and Quantitative Values and Comparison of the Numeric Pain Distress Score against Mammography. Asian Pacific J. Cancer Prev 15(14): 5759-5765. Doi: 10.7314/APJCP.2014.15.14.5759.
Dabacan, M. 2018. Analog Discovery 2 Reference Manual. Analog Discov. 2 Ref. Manual-Digilent Ref. [Online]. Available: http://autolab.sjtu.edu.cn/Assets/userfiles/sys_eb538c1c-65ff-4e82-8e6a-a1ef01127fed/files/AD2用户手册.pdf.
Ain, K., Putra, A. P., Rahma, O.n., Hikmawati, D., Rahmatillah, A., and Abdullah, C. A. 2024. Electrical Impedance Spectroscopy as a Potential Tool for Detecting Bone Porosity. Sensors and Actuators: A. Physical. 370. https://doi.org/10.1016/j.sna.2024.115252.
Sapuan, I., Ain, K. and Suryanto, A. 2017. Dual Frequency Electrical Impedance Tomography to Obtain Functional Image. J. Phys. Conf. Ser. 853(1): 012002. Doi: 10.1088/1742-6596/853/1/012002.
Trokhanova, O. V., Okhapkin, M. B. and Korjenevsky, A. V. 2008. Dual-frequency Electrical Impedance Mammography for the Diagnosis Oof Non-malignant Breast Disease. Physiol. Meas. 29(6): S331-S344. Doi: 10.1088/0967-3334/29/6/S28.
Ain, K., Kurniadi, D., Ulum, M. F., Choridah, L., Mukhayyar, U., Garnadi, A. D., Setyawan, N. H., Ariwanto, B. 2022. Development of Multi Frequency Electrical Impedance Tomography For Rectangular Geometry by Finite Volume Methods. Jurnal Teknologi. 84(2): 9-15. Doi: 10.11113/jurnalteknologi.v84.16936.
Cortes, J. C. G., Olivarez, J. P., Carmona, J. J. D., Medina, J. A. P., Munoz, J. A. G. and Gutierrez, A. I. B. 2022. Electrical Impedance Tomography Simulation for Detection of Breast Tumors Based on Tumor Emulators. 45th International Conference on Telecommunications and Signal Processing (TSP). 395-398. Doi: 10.1109/TSP55681.2022.9851291.
Mikulka, J., Zimniok, D. and Dušek, J. 2023. Laboratory System of Electrical Impedance Tomography. 14th International Conference on Measurement. 71-74. Doi: 10.23919/MEASUREMENT59122.2023.10164432.
Batista, D. S., Granziera, F., Tosin, M. C., de Melo, L. F. 2023. Analysis and Practical Implementation of a High-power Howland Current Source. Measurement. 297: 1-11. https://doi.org/10.1016/j.measurement.2022.112404.
Bennett, D. 2011. NaCl Doping and the Conductivity of Agar Phantoms. Materials Science and Engineering: C. 31(2): 494-498. Doi:10.1016/j.msec.2010.08.018.
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.