EXPERIMENTAL STUDY ON THE EFFICACY OF ULTRASOUND IN IN-SITU DETECTION OF CORROSION IN PALM OIL REFINING EQUIPMENT

Authors

  • Jan Lean Tai Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Mohamed Thariq Hameed Sultan ᵇLaboratory of Biocomposite Technology, Institute of Tropical Forest and Forest Product (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia ᶜAerospace Malaysia Innovation Centre [944751-A], Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact, 63600 Cyberjaya, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0002-1841-1452
  • Farah Syazwani Shahar Laboratory of Biocomposite Technology, Institute of Tropical Forest and Forest Product (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia https://orcid.org/0000-0002-5110-0242

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.21925

Keywords:

Phased array ultrasonic testing (PAUT), non-destructive Testing (NDT), ultrasonic thickness gauge (UTG), elevated temperature, pitting

Abstract

Palm oil is an important agricultural product for many countries. Stainless steel refining equipment faces corrosion challenges due to the corrosive nature of palm oil, which gradually deteriorates the equipment over time. Ultrasonic testing (UT) can detect corrosion, usually performed during palm mill downtime due to temperature constrain. The study aims to optimize UT at temperatures up to 250°C. The experimental outcomes serve as a foundation for broadening the application of phased array corrosion mapping (PACM) into elevated temperatures. The results offer intricate insights into velocity fluctuations within specific materials, correlating with temperature elevation. In summary, the suite of UT methods demonstrates their aptitude for employment during palm oil refinery operations up to 250°C involving carbon steel as well as 304 and 316 stainless steels. It allows further UT application during the palm mill’s operation and achieves the study’s objective of allowing palm mill owners to detect and monitor corrosion growths without stopping production.

References

Yap, Z. F., Ijab, M. T.; Saad, M.,H. 2022. Towards Smart Palm Oil Mill Factory Operations Using IR4.0 Technologies. Journal of Information System and Technology Management. 7: 46-65. Doi: 10.35631/JISTM.728004.

Mansour, M. Y. M. A., Dambul, K. D., Yeep, C. K. 2022. A Review of Non-destructive Ripeness Classification Techniques for Oil Palm Fresh Friut Bunches. J Oil Palm Res. Doi: https://doi.org/10.21894/jopr.2022.0063.

Foong, S. Z. Y., Andiappan, V., Tan, R. R., Foo, D. C. Y., Ng, D. K. S. 2019. Hybrid Approach for Optimisation and Analysis of Palm Oil Mill. Processes. 7: 1-27. Doi: 10.3390/pr7020100.

Grzejda, R. 2022. Thermal Strength Analysis of a Steel Bolted Connection under Bolt Loss Conditions. Eksploatacja Niezawodnosc. 24: 269-274.

Doi: https://doi.org/10.17531/ein.2022.2.8.

Khan, S. Z., Khan, T. M., Joya, Y. F., Khan, M. A., Ahmed, S., Shah, A. 2016. Assessment of Material Properties of AISI 316L Stainless Steel Using Non-destructive Testing. Nondestructive Testing and Evaluation. 31: 360-370.

Doi: https://doi.org/10.1080/10589759.2015.1121265.

Akhbari, A., Kutty, P. K., Chuen, O. C. Ibrahim, S. 2020. A Study of Palm Oil Mill Processing and Environmental Assessment of Palm Oil Mill Effluent Treatment. Environmental Engineering Research. 25: 212-221.

Doi: https://doi.org/10.4491/eer.2018.452.

Bahrun, M. H. V., Battak, N., Tan, W. H., Bono, A. 2022. Process Simulation of Steam Stripping of Bleached Palm Oil Deodorization for Removing Free Fatty Acids Using DWSIM. J Phys Conf Ser.

Doi: https://doi.org/10.1088/1742-6596/2314/1/012016.

Palaniandy, Y., Adam, N. M., Hung, Y. P., Naning, F. H. 2020. Potential of Steam Recovery from Excess Steam in Sterilizer at Palm Oil Mill. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 79: 17-26.

Doi: https://doi.org/10.37934/arfmts.79.1.1726.

Schempp, P., Preuß, K., Tröger, M. 2016. About the Correlation between Crude Oil Corrosiveness and Results from Corrosion Monitoring in an Oil Refinery. Corrosion. 72: 843-855.

DOI: https://doi.org/10.5006/1940.

Martins, C. M. B., Moreira, J. L., Martins, J. I. 2014. Corrosion in Water Supply Pipe Stainless Steel 304 and a Supply Line of Helium in Stainless Steel 316. Eng Fail Anal. 39: 65-71.

DOI: https://doi.org/10.1016/j.engfailanal.2014.01.017.

Loto, R. T. 2017. Study of the Corrosion Resistance of Type 304L and 316 Austenitic Stainless Steels in Acid Chloride Solution. Oriental Journal of Chemistry. 33: 1090-1096.

Doi: https://doi.org/10.13005/ojc/330304.

Fayomi, O. S. I.; Akande, I. G., Odigie, S. 2019. Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview. J Phys Conf Ser. 1378.

Doi: https://doi.org/10.1088/1742-6596/1378/2/022037.

Arifin, A., Gunawan, Yani, I. (2020). Failure Analysis of AISI 304 Stainless Steel Pipeline Transmission a Petrochemical Plant. IOP Conf Ser Mater Sci Eng. 857.

Doi: https://doi.org/10.1088/1757-899X/857/1/012006.

Subramanian, C. 2018. Localized Pitting Corrosion of API 5L Grade a Pipe Used in Industrial Fire Water Piping Applications. Eng Fail Anal. 92: 405-417.

Doi: https://doi.org/10.1016/j.engfailanal.2018.06.008.

Zhong, Y., Zhou, C., Chen, S., Wang, R. 2017. Effects of Temperature and Pressure on Stress Corrosion Cracking Behavior of 310s Stainless Steel in Chloride Solution. Chinese Journal of Mechanical Engineering (English Edition). 30: 200-206.

DOI: https://doi.org/10.3901/CJME.2016.0420.056.

Ryakhovskikh, I. V., Bogdanov, R. I. 2021. Model of Stress Corrosion Cracking and Practical Guidelines for Pipelines Operation. Eng Fail Anal. 121.

DOI: https://doi.org/10.1016/j.engfailanal.2020.105134.

Spisák, B., Szávai, S. 2019. Mechanisms of Stress Corrosion Cracking. MultiScience - XXXIII. microCAD International Multidisciplinary Scientific Conference 2019.

DOI: https://doi.org/10.26649/musci.2019.052.

Lei, X., Wirdelius, H., Rosell, A. 2020. Experimental Validation of a Phased Array Probe Model in Ultrasonic Inspection. Ultrasonics. 108.

DOI: https://doi.org/10.1016/j.ultras.2020.106217.

Turcotte, J., Rioux, P., Lavoie, J. 2016. Comparison Corrosion Mapping Solutions Using Phased Array , Conventional UT and 3D Scanners. 19th World Conference on Non-Destructive Testing 2016. 1-10.

Mattar, R. A., Kalai, R. 2018. Development of a Wall-Sticking Drone for Non-Destructive Ultrasonic and Corrosion Testing. Drones. 2: 1-11.

DOI: https://doi.org/10.3390/drones2010008.

Mohan, B. C., Jeyasekhar, M. C., Duhan, K., Land, I., Belait, K., Manager, C. 2019. Oil and Gas Assets Condition Monitoring by High Sensitive PAUT Hydroform Corrosion Monitoring Technique for Integrity Assessment. NDE 2019 - Conference & Exhibition 2019.

To, T. T., Dang, T. N. 2019. A New Approach to Corrosion Mapping of Fuel Tank from Collected Images Using Phased Array Technology. Proceedings of 2019 International Conference on System Science and Engineering, ICSSE 2019. 643-647.

DOI: https://doi.org/10.1109/ICSSE.2019.8823132.

Tangadi, S., Telidevara, N. K. S. P., Maddi, H. K. 2015. PAUT as Tool for Corrosion Damage Monitoring. Indian National Seminar & Exhibition on Non-Destructive Evaluation NDE 2015.

Lamarre, A. 2016. High-Resolution Corrosion Monitoring for Reliable Assessment of Infrastructure. 19th World Conference on Non-Destructive Testing. 1-7.

Doi: https://doi.org/10.1016/j.ultras.2016.06.020.

Cheong, Y. M., Kim, K. M., Kim, D. J. 2017. High-Temperature Ultrasonic Thickness Monitoring for Pipe Thinning in a Flow-Accelerated Corrosion Proof Test Facility. Nuclear Engineering and Technology. 49: 1463-1471.

Doi: https://doi.org/10.1016/j.net.2017.05.002.

Rioux, P. 2015. Comparison Corrosion Mapping Solutions Using Phased Array and Conventional UT Techniques. ASNT Ultrasonics for Nondestructive Testing Topical Paper Summaries. 37-47.

Jamil, J., Yahya, S. Y. S. 2019. Corrosion Assessment using Advanced Ultrasonic Measurement Technique. IOP Conf Ser Mater Sci Eng. 554.

Doi: https://doi.org/10.1088/1757-899X/554/1/012004.

Jory, C. 2019. Tips for Internal Corrosion Using the Echo to Echo Technique with Compression. The NDT Technician. 18.

Njelle, V. Z., Ikeh, O. D., E, I. A. Usuoyibo, A. 2019. Study of Corrosion Rate of Low and Medium Carbon Steel Pressure Vessel in Nigeria Oil and Gas Industry Using Ultrasonic Testing (UT) and Phase Array Ultrasonic Testing (PAUT) Method. Journal of Science and Technology Research. 1: 161-170.

Groysman, A. 2017. Corrosion Problems and Solutions in Oil, Gas, Refining and Petrochemical Industry. Koroze a Ochrana Materialu. 61: 100-117.

Doi: https://doi.org/10.1515/kom-2017-0013.

Kien, D. T., van Thanh, P. 2017. Influence of Temperature on Mechanical Characteristics of 1018 Low Carbon Steel Estimated by Ultrasonic Non-Destructive Testing Method. Indian Journal of Pure and Applied Physics. 55: 431-435.

Tai, J. L., Sultan, M. T. H., Tarasiuk, W., Napiórkowski, J., Łukaszewicz, A., Shahar, F. S. 2023, Ultrasonic Velocity and Attenuation of Low-Carbon Steel at High Temperatures. Materials. 16.

Doi: https://doi.org/10.3390/ma16145123.

Jiao, J., Fan, Z., Zhong, F., He, C., Wu, B. 2016. Application of Ultrasonic Methods for Early Detection of Intergranular Corrosion in Austenitic Stainless Steel. Research in Nondestructive Evaluation. 27: 193-203.

Doi: https://doi.org/10.1080/09349847.2015.1103922.

Lhuillier, P. E., Chassignole, B., Oudaa, M., Kerhervé, S. O., Rupin, F., Fouquet, T. 2017. Investigation of the Ultrasonic Attenuation in Anisotropic Weld Materials with Finite Element Modeling and Grain-Scale Material Description. Ultrasonics. 78: 40-50.

DOI: https://doi.org/10.1016/j.ultras.2017.03.004.

Mahaut, S., Godefroit, J. L., Roy, O., Cattiaux, G. 2004. Application of Phased Array Techniques to Coarse Grain Components Inspection. Ultrasonics. 42: 791-796.

Doi: https://doi.org/10.1016/j.ultras.2004.01.068.

Piri, B., Amini, R., Asadinia, E., Vardak, S., Mehdilouee, R., Mojarrad, A. 2021. Investigation of Failure Mechanisms and Remaining Life Prediction of Firewater Pipelines Used in Industrial Applications. Eng Fail Anal. 124.

Doi: https://doi.org/10.1016/j.engfailanal.2021.105301.

Azzura, I., Farhana, M. S. N., Lokman, M. N., Mahzan, S., Ahmad, S., Rahman, H. A., Salleh, S. M. 2019. Identification Corrosion Hydrogen Attack on Carbon Steel Using Magnetic Particle Inspection (MPI). IOP Conf Ser Mater Sci Eng. 494.

DOI: https://doi.org/10.1088/1757-899X/494/1/012059.

Suchato, N., Sharples, S., Light, R., Kalashnikov, A. 2017. Experimental Setup of Continuous Ultrasonic Monitoring for Corrosion Assessment. IEEE International Ultrasonics Symposium, IUS. 2-5.

Doi: https://doi.org/10.1109/ULTSYM.2017.8091775.

Singh, K. J., Matsuda, Y., Hattori, K., Nakano, H., Nagai, S. 2003. Non-Contact Sound Velocities and Attenuation Measurements of Several Ceramics at Elevated Temperatures. Ultrasonics. 41: 9-14.

Doi: https://doi.org/10.1016/S0041-624X(02)00392-X.

Bao, Y., Zhang, H., Ahmadi, M., Karim, M. A., Felix Wu, H. 2014. Measurements of Young's and Shear Moduli of Rail Steel at Elevated Temperatures. Ultrasonics. 54: 867-873.

Doi: https://doi.org/10.1016/j.ultras.2013.10.015.

Wall, M., Burch, S., Lilley, J. 2009, Human Factors in POD Modelling and Use of Trial Data. Insight: Non-Destructive Testing and Condition Monitoring. 51: 553-561.

DOI: https://doi.org/10.1784/insi.2009.51.10.553.

Tai, J. L., Grzejda, R., Sultan, M. T. H., Łukaszewicz, A., Shahar, F. S., Tarasiuk, W., Rychlik, A. 2023. Experimental Investigation on the Corrosion Detectability of A36 Low Carbon Steel by the Method of Phased Array Corrosion Mapping. Materials. 16. Doi: https://doi.org/10.3390/ma16155297.

Gunasekar, S., Sastikumar, D. 2020. Comparison of Side Drilled Holes and Surface Notch Response for Phased Array Sectorial Beams Calibration Process. NDE 2020 - Conference & Exhibition. 1-11.

Slongo, J. S., Gund, J., Passarin, T. A. R., Pipa, D. R., Ramos, J. E., Arruda, L. V., Junior, F. N. 2022. Effects of Thermal Gradients in High-Temperature Ultrasonic Non-Destructive Tests. Sensors. 22: 1-16.

Doi: https://doi.org/10.3390/s22072799.

Bouchy, S., Zednik, R. J., Belanger, P. 2023. Ultrasonic Transducers for In-Service Inspection and Continuous Monitoring in High-temperature Environments. Sensors (Basel). 23: 1-13.

Doi: https://doi.org/10.3390/s23073520

Kazys, R., Vaskeliene, V. 2021. High Temperature Ultrasonic Transducers: A Review. Sensors. 21.

Doi: https://doi.org/10.3390/s21093200.

Maggi, L. E., Silva, C. E. R., Alvarenga, A. V. Costa-Felix, R. P. B. 2011. Ultrasonic Calibration and Certification of V1 and V2 Type Reference Standard Blocks for Use in Non-Destructive Testing. J Phys Conf Ser. 279.

Doi: https://doi.org/10.1088/1742-6596/279/1/012029.

Downloads

Published

2024-06-02

Issue

Section

Science and Engineering

How to Cite

EXPERIMENTAL STUDY ON THE EFFICACY OF ULTRASOUND IN IN-SITU DETECTION OF CORROSION IN PALM OIL REFINING EQUIPMENT. (2024). Jurnal Teknologi, 86(4), 151-159. https://doi.org/10.11113/jurnalteknologi.v86.21925