THE CT NUMBER UNIFORMITY AND HOMOGENEITY: WHICH IS BETTER FOR DETECTING THE BEAM HARDENING ARTEFACTS?
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.21985Keywords:
CT number linearity, Catphan phantom, CT scan, image qualityAbstract
This study compares the CT number uniformity and homogeneity for detecting beam hardening artefact from images of the American College of Radiology (ACR) computed tomography (CT) phantom scanned with 20 CT scanners from four manufacturers, and images with and without beam hardening artefact. Software to automatically measure CT number uniformity and homogeneity was developed. For CT number uniformity, the coordinates of the peripheral positions of the region of interest (ROIs) at four different positions and one ROI at the middle of the phantom were automatically determined. For CT number homogeneity, the rectangular ROIs of 32 pixels across 85% of the area of the phantom were automatically arranged. CT number uniformity and homogeneity of images from 20 CT scanners were investigated using an ACR CT phantom. To find usefulness of the CT number homogeneity, images with and without beam hardening artefacts were evaluated. The developed software successfully measured CT number uniformity and homogeneity of the images. All scanners produced achievable range of CT number uniformity, i.e., within 5 HU. However, some scanners had CT number homogeneities less than 5 HU, while others had CT number homogeneities more than 5 HU. It is found that the CT number homogeneity is able to detect the beam hardening artefact, while CT number uniformity is not able to detect it. A system for automatically measure CT number uniformity and homogeneity has been developed.
References
Kim, N. T., Kwon, S. S., Park, M. S., Lee, K. M., & Sung, K. H. 2022. National Trends in Pediatric CT Scans in South Korea: A Nationwide Cohort Study. Taehan Yongsang Uihakhoe chi. 83(1): 138–148.
Doi: https://doi.org/10.3348/jksr.2021.0052.
Ha, T. N., Kamarova, S., Youens, D., et al. 2022. Trend in CT Utilisation and Its Impact on Length of Stay, Readmission and Hospital Mortality in Western Australia Tertiary Hospitals: An Analysis of Linked Administrative Data 2003–2015. BMJ Open. 12: e059242.
Doi: https://doi.org/10.1136/bmjopen-2021-059242.
Pola, A., Corbella, D., Righini, A., Torresin, A., Colombo, P. E., Vismara, L., Trombetta, L., Maddalo, M., Introini, M. V., Tinelli, D., Strohmenger, L., Garattini, G., Munari, A., & Triulzi, F. 2018. Computed Tomography Use in a Large Italian Region: Trend Analysis 2004-2014 of Emergency and Outpatient CT Examinations in Children and Adults. European Radiology. 28(6): 2308–2318.
Doi: https://doi.org/10.1007/s00330-017-5225-x.
Wang, R. C., Kornblith, A. E., Grupp-Phelan, J., Smith-Bindman, R., Kao, L. S., & Fahimi, J. 2021. Trends in Use of Diagnostic Imaging for Abdominal Pain in U.S. Emergency Departments. AJR. American Journal of Roentgenology. 216(1): 200–208.
Doi: https://doi.org/10.2214/AJR.19.22667.
Doria, A. S., Moineddin, R., Kellenberger, C. J., Epelman, M., Beyene, J., Schuh, S., Babyn, P. S., & Dick, P. T. 2006. US or CT for Diagnosis of Appendicitis in Children and Adults? A Meta-Analysis. Radiology. 241(1): 83–94.
Doi: https://doi.org/10.1148/radiol.2411050913.
van Eijnatten, M., van Dijk, R., Dobbe, J., Streekstra, G., Koivisto, J., & Wolff, J. 2018. CT Image Segmentation Methods for Bone used in Medical Additive Manufacturing. Medical Engineering & Physics. 51: 6–16.
Doi: https://doi.org/10.1016/j.medengphy.2017.10.008.
Fu, Y., Liu, S., Li, H., & Yang, D. 2017. Automatic and Hierarchical Segmentation of the Human Skeleton in CT images. Physics in Medicine and Biology. 62(7): 2812–2833.
Doi: https://doi.org/10.1088/1361-6560/aa6055.
Revels, J. W., Wang, S. S., Gharai, L. R., Febbo, J., Fadl, S., & Bastawrous, S. 2021. The Role of CT in Planning Percutaneous Structural Heart Interventions: Where to Measure and Why. Clinical Imaging. 76: 247–264.
Doi: https://doi.org/10.1016/j.clinimag.2021.04.029.
Li, Y., Dai, Y., Yu, N., Duan, X., Zhang, W., Guo, Y., & Wang, J. 2019. Morphological Analysis of Blood Vessels Near Lung Tumors using 3-D Quantitative CT. Journal of X-ray Science and Technology. 27(1): 149–160.
Doi: https://doi.org/10.3233/XST-180429.
Mohammed Ali, A., Hogg, P., Abuzaid, M., & England, A. 2019. Impact of Acquisition Parameters on Dose and Image Quality Optimisation in Paediatric Pelvis Radiography-A Phantom Study. European Journal of Radiology. 118: 130–137.
Doi: https://doi.org/10.1016/j.ejrad.2019.07.014.
Zhu, L., Ha, R., Machida, H., Shi, X., Wang, F., Chen, K., Chen, D., Cao, Y., Shen, Y., & Yang, L. 2023. Image Quality of Coronary CT Angiography at Ultra Low Tube Voltage Reconstructed with a Deep-learning Image Reconstruction Algorithm in Patients of Different Weight. Quantitative Imaging in Medicine and Surgery. 13(6): 3891–3901.
Doi: https://doi.org/10.21037/qims-22-1141.
Schwartz, F. R., Clark, D. P., Rigiroli, F., Kalisz, K., Wildman-Tobriner, B., Thomas, S., Wilson, J., Badea, C. T., & Marin, D. 2023. Evaluation of The Impact of a Novel Denoising Algorithm on Image Quality in Dual-energy Abdominal CT of Obese Patients. European Radiology. 33(10): 7056–7065.
Doi: https://doi.org/10.1007/s00330-023-09644-7.
Higaki, T., Nakamura, Y., Tatsugami, F., Nakaura, T., & Awai, K. 2019. Improvement of Image Quality at CT and MRI using Deep Learning. Japanese Journal of Radiology. 37(1): 73–80.
Doi: https://doi.org/10.1007/s11604-018-0796-2.
Shirasaka, T., Kojima, T., Funama, Y., Sakai, Y., Kondo, M., Mikayama, R., Hamasaki, H., Kato, T., Ushijima, Y., Asayama, Y., & Nishie, A. 2021. Image Quality Improvement with Deep Learning-based Reconstruction on Abdominal Ultrahigh-resolution CT: A Phantom Study. Journal of Applied Clinical Medical Physics. 22(7): 286–296.
Doi: https://doi.org/10.1002/acm2.13318.
Tian, Q., Li, X., Li, J., Cheng, Y., Niu, X., Zhu, S., Xu, W., & Guo, J. 2022. Image Quality Improvement in Low-dose Chest CT with Deep Learning Image Reconstruction. Journal of Applied Clinical Medical Physics. 23(12): e13796.
Doi: https://doi.org/10.1002/acm2.13796.
Barrett, J. F., & Keat, N. 2004. Artifacts in CT: Recognition and Avoidance. Radiographics: A Review Publication of the Radiological Society of North America, Inc. 24(6): 1679–1691.
Doi: https://doi.org/10.1148/rg.246045065.
Alzain, A. F., Elhussein, N., Fadulelmulla, I. A., Ahmed, A. M., Elbashir, M. E., Elamin, B. A. 2021. Common Computed Tomography Artefact: Source and Avoidance. Egypt J Radiol Nucl Med. 52: 151.
Doi: https://doi.org/10.1186%2Fs43055-021-00530-0.
Abella, M., Martinez, C., Desco, M., Vaquero, J. J., & Fessler, J. A. 2020. Simplified Statistical Image Reconstruction for X-ray CT With Beam-Hardening Artifact Compensation. IEEE Transactions on Medical Imaging. 39(1): 111–118.
Doi: https://doi.org/10.1109/TMI.2019.2921929.
Hur, J., Kim, D., Shin, Y. G., & Lee, H. 2021. Metal Artifact Reduction Method based on a Constrained Beam-hardening Estimator for Polychromatic X-ray CT. Physics in Medicine and Biology. 66(6): 065025.
Doi: https://doi.org/10.1088/1361-6560/abe026.
Abdurahman, S., Frysch, R., Bismark, R., Melnik, S., Beuing, O., & Rose, G. 2018. Beam Hardening Correction Using Cone Beam Consistency Conditions. IEEE Transactions on Medical Imaging. 37(10): 2266–2277.
Doi: https://doi.org/10.1109/TMI.2018.2840343.
Tsai, H. Y., Chen, M. C., Tsai, I. C., & Chen, C. C. 2011. Partial Ring Artifact on Cardiac CT: Image Presentation and Clinical Implication. The International Journal of Cardiovascular Imaging. 27(5): 689–693.
Doi: https://doi.org/10.1007/s10554-011-9862-x.
Sijbers, J., & Postnov, A. 2004. Reduction of Ring Artefacts in High Resolution Micro-CT Reconstructions. Physics in Medicine and Biology. 49(14): N247–N253.
Doi: https://doi.org/10.1088/0031-9155/49/14/n06.
Prell, D., Kyriakou, Y., & Kalender, W. A. 2009. Comparison of Ring Artifact Correction Methods for Flat-detector CT. Physics in Medicine and Biology. 54(12): 3881–3895.
Doi: https://doi.org/10.1088/0031-9155/54/12/018.
du Plessis, A. M., Theron, S., & Andronikou, S. 2009. The Effects of Misinterpretation of an Artefact on Multidetector Row CT Scans in Children. Pediatric Radiology. 39(2): 137–141.
Doi: https://doi.org/10.1007/s00247-008-1052-1.
Gulliksrud, K., Stokke, C., & Martinsen, A. C. 2014. How to Measure CT Image Quality: Variations in CT-numbers, Uniformity and Low Contrast Resolution for a CT Quality Assurance Phantom. Physica Medica: PM: An International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics (AIFB). 30(4): 521–526.
Doi: https://doi.org/10.1016/j.ejmp.2014.01.006.
Contillo, A., Veronese, A., Brombal, L., Donato, S., Rigon, L., Taibi, A., Tromba, G., Longo, R., & Arfelli, F. 2018. A Proposal for a Quality Control Protocol in Breast CT with Synchrotron Radiation. Radiology and Oncology. 52(3): 329–336.
Doi: https://doi.org/10.2478/raon-2018-0015.
IEC. 2013. International Standard IEC 61223-3-5: Evaluation and Routine Testing in Medical Imaging Departments - Part 3-5: Acceptance and Constancy Tests – Imaging Performance of Computed Tomography X-Ray Equipment.
McCollough, C. H., Bruesewitz, M. R., McNitt-Gray, M. F., Bush, K., Ruckdeschel, T., Payne, J. T., Brink, J. A., Zeman, R. K., & American College of Radiology. 2004. The Phantom Portion of the American College of Radiology (ACR) Computed Tomography (CT) Accreditation Program: Practical Tips, Artifact Examples, and Pitfalls to Avoid. Medical Physics. 31(9): 2423–2442.
Doi: https://doi.org/10.1118/1.1769632.
Nowik, P., Bujila, R., Poludniowski, G., & Fransson, A. 2015. Quality Control of CT Systems by Automated Monitoring of Key Performance Indicators: A Two-Year Study. Journal of Applied Clinical Medical Physics. 16(4): 254–265.
Doi: https://doi.org/10.1120/jacmp.v16i4.5469.
Anam, C., Naufal, A., Fujibuchi, T., Matsubara, K., & Dougherty, G. 2022. Automated Development of the Contrast-detail Curve based on Statistical Low-contrast Detectability in CT Images. Journal Of Applied Clinical Medical Physics. 23(9): e13719.
Doi: https://doi.org/10.1002/acm2.13719.
Cody, D. D., Stevens, D. M., & Ginsberg, L. E. 2005. Multi-Detector Row CT Artifacts that Mimic Disease. Radiology. 236(3): 756–761.
Doi: https://doi.org/10.1148/radiol.2363041421.
Roa, A. M., Andersen, H. K., & Martinsen, A. C. 2015. CT Image Quality Over Time: Comparison of Image Quality for Six Different CT Scanners over a Six-year Period. Journal of Applied Clinical Medical Physics. 16(2): 4972.
Doi: https://doi.org/10.1120/jacmp.v16i2.4972.
Husby, E., Svendsen, E. D., Andersen, H. K., & Martinsen, A. C. T. 2017. 100 Days with Scans of the Same Catphan phantom on the Same CT Scanner. Journal of Applied Clinical Medical Physics. 18(6): 224–231.
Doi: https://doi.org/10.1002/acm2.12186.
Anam, C., Triadyaksa, P., Naufal, A., Arifin, Z., Muhlisin, Z., Setiawati, E., & Budi, W. S. 2022. Impact of ROI Size on the Accuracy of Noise Measurement in CT on Computational and ACR Phantoms. Journal of Biomedical Physics & Engineering. 12(4): 359–368.
Doi: https://doi.org/10.31661/jbpe.v0i0.2202-1457.
Hutchinson, B. D., Navin, P., Marom, E. M., Truong, M. T., & Bruzzi, J. F. 2015. Overdiagnosis of Pulmonary Embolism by Pulmonary CT Angiography. AJR. American Journal of Roentgenology. 205(2): 271–277.
Doi: https://doi.org/10.2214/AJR.14.13938.
Kheruka, S., Naithani, U., Maurya, A., Painuly, N., Aggarwal, L., & Gambhir, S. 2011. A Study to Improve the Image Quality in Low-dose Computed Tomography (SPECT) using Filtration. Indian Journal of Nuclear Medicine: IJNM: The Official Journal of the Society of Nuclear Medicine, India. 26(1): 14–21.
Doi: https://doi.org/10.4103/0972-3919.84595.
Kane, A. G., Reilly, K. C., & Murphy, T. F. 2004. Swimmer's CT: Improved Imaging of the Lower Neck and Thoracic Inlet. AJNR. American Journal of Neuroradiology. 25(5): 859–862.
Cho, P. K., Lee, Y. H., Kim, Y. H., Choi, J. H., Shin, D. C., Choi, T. K., Kim, J. S., Kim, K. H., & Kim, S. U. 2008. Improved Imaging of the Cervico-thoracic Junction in Computed Tomography. Yonsei Medical Journal. 49(1): 84–89.
Doi: https://doi.org/10.3349/ymj.2008.49.1.84.
Habibzadeh, M. A., Ay, M. R., Asl, A. R., Ghadiri, H., & Zaidi, H. 2012. Impact of Miscentering on Patient Dose and Image Noise in X-ray CT Imaging: Phantom and Clinical Studies. Physica Medica: PM: An International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics (AIFB). 28(3): 191–199.
Doi: https://doi.org/10.1016/j.ejmp.2011.06.002.
Nute, J. L., Rong, J., Stevens, D. M., Darensbourg, B. J., Cheng, J., Wei, W., Hobbs, B. P., & Cody, D. D. 2013. Evaluation of over 100 Scanner-years of Computed Tomography Daily Quality Control Data. Medical Physics. 40(5): 051908.
Doi: https://doi.org/10.1118/1.4800796.
International Atomic Energy Agency. 2012. Quality Assurance Programme for Computed Tomography: Diagnostic and Therapy Applications. IAEA Human Health Series No. 19.
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.