THE EFFECT OF TRAVEL SPEED AND ELECTRICAL CURRENT ON PHYSICAL AND MECHANICAL PROPERTIES OF CNC MIG WELDED LOW CARBON STEEL PLATE A36
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.21992Keywords:
CNC-MIG, Defect, Current, Travel Speed, Low Carbon SteelAbstract
The MIG welding process is widely used in industry because it is cost-effective, can be done with all positions, and has high productivity. The accuracy of the welding process and the relative welding parameters influence the welding quality. A CNC welding system can be used in welding to produce precise and stable welds. The experimental welding process in this study used materials ASTM A36, the welding process on a CNC MIG machine with current and travel speed parameters. The experimental results of the welding process identify defects with the Non-Destructive Test (NDT)-Liquid Penetrant Test (LPT)/Dye-Penetrant Test and Destructive Test (DT) including Tensile Test, Hardness Vickers, Macrostructure, and Microstructure, aimed at determining defects that occur. The results of the NDT and DT tests showed that there were porosity defects on the surface, slag, and incomplete penetration in the internal area of the metal weld. The welding results are best visually with a dye penetrant test at a current of 70 A a travel speed of 100 mm/min, and 80 A travel speed of 150mm/min and 200 mm/min. The hardness test results show that there is an influence on the welding current and travel speed. The tensile test results of welding results show the influence of current and travel speed, where the highest tensile strength at a current of 90A is 278 MPa, and the tensile strength at a travel speed of 200 mm/minute has a tensile strength of 286 MPa.
References
Bera, T. 2020. The History of Development of Gas Metal Arc Welding Process. Indian Science Cruiser. 34(4): 64–66.
Doi: https://doi.org/10.24906/isc%2F2020%2Fv34%2Fi6%2F208225.
Ogbonna, O. S., Akinlabi, S. A., Madushele, N., Mashinini, P. M., and Abioye, A. A. 2019. Application of MIG and TIG Welding in Automobile Industry. Journal of Physics: Conference Series. 1378(4): 042065.
Doi: https://doi.org/10.1088/1742-6596/1378/4/042065.
Ogundimu, E. O., Akinlabi, E. T., and Erinosho, M. F. 2019. Comparative Study between TIG and MIG Welding Processes. Journal of Physics: Conference Series. 1378(2): 022074.
Doi: https://doi.org/10.1088/1742-6596/1378/2/022074.
Mahdi, E., Eltai, E. O., and Rauf, A. 2014. The Impact of Metal Inert Gas Welding on the Corrosion and Mechanical Behavior of AA 6061 T6. International Journal of Electrochemical Science. 9(3): 1087–1101.
Doi: https://doi.org/10.1016/S1452-3981(23)07780-5.
Ghosh, N., Pal, P. K., and Nandi, G. 2016. Parametric Optimization of MIG Welding on 316L Austenitic Stainless Steel by Grey-based Taguchi Method. Procedia Technology. 25: 1038–1048.
Doi: https://doi.org/10.1016/j.protcy.2016.08.204.
Adin, M. Ş., and İşcan, B. 2022. Optimization of Process Parameters of Medium Carbon Steel Joints Joined by MIG Welding using Taguchi Method. European Mechanical Science. 6(1): 17–26.
Doi: https://doi.org/10.26701/ems.989945.
Abbasi, K., Alam, S., and Khan, M. I. 2012. An Experimental Study on the Effect of MIG Welding Parameters on the Weld-bead Shape Characteristics. Engineering Science and Technology: An International Journal (ESTIJ). 2(4): 599–602.
Furqan, A., and Amarnadha, M. 2020. Optimization of Mig Welding Parameters for Improving Strength of Welded Joint. Journal of Interdisciplinary Cycle Research. 6: 128–135.
Doi:18.0002.JICR.2020.V12I8.008301.31712157.
Majeed, N. H., Radhi, H. E., & Abid, H. J. 2021. Optimization of MIG Welding Parameters. University of Thi-Qar Journal for Engineering Sciences. 11(2): 1–7.
Doi: http://www.doi.org/10.31663/tqujes.11.2.382(2021).
Hooda, A., Dhingra, A., and Sharma, S. 2012. Optimization of MIG Welding Process Parameters to Predict Maximum Yield Strength in AISI 1040. International Journal of Mechanical Engineering and Robotics Research. 1(3): 203–213.
Frih, I., Adragna, P. A., and Montay, G. 2015. Influence of a Welding Defect on a HSLA S500MC Steel Plate: Microstructure and Residual Stress Evaluation. Proceedings of the 6th International Conference on Mechanics and Materials in Design. 169–180.
Fahad, N. D., and Alkhafaji, M. M. A. 2022. Investigation of MIG Welding Process Parameters on Welding Defects and Hardness of Low Carbon Steel Weld Joints. International Journal of Energy and Environment. 13(3): 113–120.
Ismael, Q. H. 2022. Investigation of Mechanical Properties of Low Carbon Steel Weldments for Different Welding Processes. SVU-International Journal of Engineering Sciences and Applications. 3(2): 116–122.
Doi: 10.21608/SVUSRC.2022.152920.1061.
Djuhana, M. 2019. Influence of Variation of Electrical Current Welding of ASTM Steel A 36 on Microstructure and Mechanical Properties. J. Phys. Conf. Ser. 1204: 012014.
Doi: http://doi.org/10.1088/1742-6596/1204/1/012014.
Behredin, K. B., Janaki Ramulu, P., Habtamu, B., Besufekad, N., and Tesfaye, N. 2022. Characterization and Parametric Optimization of EN-10149-2 Steel Welded Joints Made by MIG Welding. Advances in Materials Science and Engineering. 2022.
Doi: https://doi.org/10.1155/2022/8276496.
Mahore, N., Sharma, T., and Singh, R. 2017. Study of MIG welding Process with Different Type Technique: A Review. IJSTE-International J. Sci. Technol. Eng. 4(6): 1–5.
Salunke, S., Mali, M., Yande, O., and Kulkarni, V. 2020. Automatic Welding Machine for Exhaust Pipes Using MIG Welding Process. International Research Journal of Engineering and Technology (IRJET). 7(6): 5791–5794.
Dmello, S. S., Biju, J., Hegde, S. S., and Ganoo, A. V. 2017. Design and Fabrication of Automated 2-Axis Welding Machine. International Journal of Mechanical Engineering and Technology. 8(3).
Ghazvinloo, H. R., Honarbakhsh-Raouf, A., and Shadfar, N. 2010. Effect of Arc Voltage, Welding Current and Welding Speed on Fatigue Life, Impact Energy and Bead Penetration of AA6061 Joints Produced by Robotic MIG Welding. Indian Journal of Science and Technology. 3(2): 156–162.
Doi:10.17485/ijst/2010/v3i2.8.
Sudhakar, R., Sivasubramanian, R., and Yoganandh, J. 2018. Effect of Automated MIG Welding Process Parameters on ASTM A 106 Grade B Pipe Weldments used in High-temperature Applications. Materials and Manufacturing Processes. 33(7): 749–758.
Doi: https://doi.org/10.1080/10426914.2017.1401719.
Mustafa, F. F., and Rao, M. I. 2016. Automatic Welding Machine for Pipeline using MIG Welding Process. International Research of Engineering and Technology (IRJET). 3(12): 1–7.
Frolov, A. V. 2021. Pipe Welding Machine Modernization. Journal of Physics: Conference Series. 2096(1): 012016.
Doi: https://doi.org/10.1088/1742-6596/2096/1/012016.
Liu, X., Qiu, C., Zeng, Q., and Li, A. 2019. Kinematics Analysis and Trajectory Planning of Collaborative Welding Robot with Multiple Manipulators. Procedia Cirp. 81: 1034–1039.
Doi: https://doi.org/10.1016/j.procir.2019.03.247.
Ali, S., Agrawal, A. P., Ahamad, N., Singh, T., and Wahid, A. 2022. Robotic MIG Welding Process Parameter Optimization of Steel EN24T. Materials Today: Proceedings. 62: 239–244. Doi: https://doi.org/10.1016/j.matpr.2022.03.091.
Lin, H. 2011. Design of Special Welding Machine based on Open CNC System. Communication Systems and Information Technology: Selected Papers from the 2011 International Conference on Electric and Electronics (EEIC 2011) in Nanchang, China on June 20-22, 2011. 4: 839–844. Springer Berlin Heidelberg.
Doi: https://doi.org/10.1007/978-3-642-21762-3_110.
Verma, K., Belokar, R. M., Verma, V. K., and Ntalianis, K. 2019. Track-based Analysis for Profile Generation on Globoidal Cam in Automatic Tool Changer of CNC Machining Center. Assembly Automation. 39(2): 369–379.
Doi: https://doi.org/10.1108/AA-08-2018-111.
Baskoro, A. S., Hidayat, R., Widyianto, A., Amat, M. A., and Putra, D. U. 2020. Optimization of Gas Metal Arc Welding (GMAW) Parameters for Minimum Distortion of T Welded Joints of A36 Mild Steel by Taguchi Method. Materials Science Forum. 1000: 356–363. Trans Tech Publications Ltd.
DOI: https://doi.org/10.4028/www.scientific.net/MSF.1000.356.
AL-Musawi, M. A., and Ali, A. R. K. A. 2018. Fatigue Analysis of Welding Joints of ASTM A36 Low Carbon Steel by Using Finite Element Method. Journal of University of Babylon for Engineering Sciences. 26(4): 237–248.
International Standard Organization (ISO). 2013. EN ISO 9692-1: 2013 Welding and Allied Processes—Types of Joint Preparation—Part. 1: Manual Metal. Arc Welding, Gas.-Shielded Metal. Arc Welding, Gas. Welding, TIG Welding and Beam Welding of Steels.
Ferdinandov, N., Gospodinov, D., Ilieva, M., and Radev, R. 2021. Effect of the Root Gap on the Structure and Properties of High Strength Steel S700MC Welds. Key Engineering Materials. 890: 201–208.
DOI: https://doi.org/10.4028/www.scientific.net/KEM.890.201.
International Standard Organization (ISO). 2009. EN ISO 6892-1:2009, Metallic Materials –Tensile Testing –Part 1: Method of Test at Room Temperature.
Deepak, J. R., Raja, V. B., Srikanth, D., Surendran, H., and Nickolas, M. M. 2021. Non-destructive Testing (NDT) Techniques for Low Carbon Steel Welded Joints: A Review and Experimental Study. Materials Today: Proceedings. 44: 3732–3737.
Doi: https://doi.org/10.1016/j.atpr.2020.11.578.
Reddy, K. A. 2017. Non-destructive Testing, Evaluation of Stainless Steel Materials. Materials Today: Proceedings. 4(8): 7302–7312.
Doi: https://doi.org/10.1016/j.matpr.2017.07.060.
Khalid, N., Zamanhuri, P. Z. N. M., and Baharin, F. A. S. 2017. A Study of Weld Defects of Gas Metal Arc Welding with Different Shielding Gasses. ARPN Journal of Engineering and Applied Sciences. 12: 2006–2011.
Mahesh, S., and Appalaraju, V. 2017. Optimization of MIG Welding Parameters for Improving Strength of Welded Joints. International Journal of Innovative Technology and Research. 5(3): 6453–6458.
Shinde, A. P., Deshpande, A. R., Chinchanikar, S. S., and Kulkarni, A. P. 2017. Evaluation of Tensile Strength of a Butt-welded Joint Considering the Effect of Welding Parameters using Response Surface Methodology. Materials Today: Proceedings. 4(8): 7219–7227.
Doi: https://doi.org/10.1016/j.matpr.2017.07.049.
Endramawan, T., and Sifa, A. 2018. Non Destructive Test Dye Penetrant and Ultrasonic on Welding SMAW Butt Joint with Acceptance Criteria ASME Standard. IOP Conference Series: Materials Science and Engineering. 306(1): 012122.
DOI: https://doi.org/10.1088/1757-899X/306/1/012122.
Sivakumar, S., and Kumar, J. V. 2015. Experimental Investigation on MIG Welded Mild Steel. International Journal of Machine and Construction Engineering. 2(1): 2394–3025.
Senthilkumar, S., Manivannan, S., Venkatesh, R., and Karthikeyan, M. 2023. Influence of Heat Input on the Mechanical Characteristics, Corrosion and Microstructure of ASTM A36 Steel Welded by GTAW Technique. Heliyon. 9(9).
Doi: https://doi.org/10.1016/j.heliyon.2023.e19708.
Saleh Elfallah, S. S. 2023. Study the Influence of Welding Parameters by Taguchi’s Design on the Mechanical Properties of Welded Mild Steel (S235jr). Jurnal Teknologi. 85(4): 55–66.
Doi:https://Doi.Org/10.11113/Jurnalteknologi.V85.19653
Mandal, N. R. 2017. Welding Defects. In: Ship Construction and Welding. Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping. 2. Springer, Singapore.
Doi: https://doi.org/10.1007/978-981-10-2955-4_19.
Khan, N. U., Rajput, S. K., Gupta, V., Verma, V., and Soota, T. 2019. To Study Mechanical Properties and Microstructures of MIG Welded High Strength Low Alloy Steel. Materials Today: Proceedings. 18: 2550–2555.
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.