SUPERIOR ANTIBACTERIAL PROPERTIES OF COPPER-BEARING HIGH ENTROPY ALLOY COATED STAINLESS STEEL SURFACE FABRICATED USING LASER CLADDING

Authors

  • Nazar Khalaf Mahan ᵃDepartment of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᶜDepartment of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
  • Mohammed F. Al-Marjani Laser Center, Ibnu Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Safwan Abd Aziz ᵃDepartment of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇLaser Center, Ibnu Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Abdul Rahman Johari ᵃDepartment of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇLaser Center, Ibnu Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siti Qistina Arora Talib ᵃDepartment of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇLaser Center, Ibnu Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ganesan Krishnan ᵃDepartment of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇLaser Center, Ibnu Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.22020

Keywords:

Stainless steel, Antibacterial activity, High entropy alloy, In-situ alloying, Laser cladding

Abstract

A high-entropy alloy (HEA) coating is applied to a stainless-steel surface using the laser cladding (LC) process. This coating offers a broad-spectrum antibacterial ability and favorable mechanical properties. The release of copper ions from the HEA effectively inhibits the growth of Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), enhancing the alloy’s suitability for various applications requiring antibacterial properties. The elemental compositions, sizes, and morphologies of the constructed HEAs are revealed through X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). This study validates the feasibility of applying the antibacterial CoCrFeCuNi HEA alloy coating to stainless steel via LC. The antibacterial evaluation showcases the enhanced efficacy of the CoCrCuFeNi HEA coating, demonstrating an antibacterial effectiveness of approximately 89% against E. coli and 98% against S. aureus. In contrast, the CoCrFeNi HEA coating exhibits an antibacterial effectiveness of about 40% against E. coli and 93% against S. aureus. The Vickers hardness of the stainless steel coated with CoCrCuFeNi HEA has significantly increased to 352 HV, compared to the CoCrFeNi coating with a hardness of 300.6 HV and the uncoated stainless steel with a hardness of 256.6 HV. This HEA alloy demonstrates considerable potential for use in medical applications or other settings that require antibacterial features.

References

Adlhart, C., Verran, J., Azevedo, N. F., Olmez, H., Keinänen-Toivola, M. M., Gouveia, I., Melo, L. F. and Crijns, F. 2018. Surface Modifications for Antimicrobial Effects in the Healthcare Setting: A Critical Overview. Journal of Hospital Infection. 99(3): 239-249.

Lewis, D. 2021. COVID-19 Rarely Spreads through Surfaces. So Why are We Still Deep Cleaning. Nature. 590(7844): 26-28.

Owusu, E., Asane, F. W., Bediako-Bowan, A. A. and Afutu, E. 2022. Bacterial Contamination of Surgical Instruments used at the Surgery Department of a Major Teaching Hospital in a Resource-limited Country: An Observational Study. Diseases. 10(4): 81.

Cloutman-Green, E., Canales, M., Zhou, Q., Ciric, L., Hartley, J.C. and McDonnell, G. 2015. Biochemical and Microbial Contamination of Surgical Devices: A Quantitative Analysis. American Journal of Infection Control. 43(6): 659-661.

Panta, G., Richardson, A. K. and Shaw, I. C. 2019. Effectiveness of Autoclaving in Sterilizing Reusable Medical Devices in Healthcare Facilities. The Journal of Infection in Developing Countries. 13(10): 858-864.

de Melo Costa, D., de Oliveira Lopes, L. K., Hu, H., Tipple, A. F. V. and Vickery, K. 2017. Alcohol Fixation of Bacteria to Surgical Instruments Increases Cleaning Difficulty and may Contribute to Sterilization Inefficacy. American Journal of Infection Control. 45(8): e81-e86.

Nan, L., Xu, D., Gu, T., Song, X. and Yang, K. 2015. Microbiological Influenced Corrosion Resistance Characteristics of a 304L-Cu Stainless Steel against Escherichia coli. Materials Science and Engineering: C. 48: 228-234.

Zhao, J., Zhai, Z., Sun, D., Yang, C., Zhang, X., Huang, N., Jiang, X. and Yang, K. 2019. Antibacterial Durability and Biocompatibility of Antibacterial-passivated 316L Stainless Steel in Simulated Physiological Environment. Materials Science and Engineering: C. 100: 396-410.

Axinte, D., Guo, Y., Liao, Z., Shih, A. J., M’Saoubi, R. and Sugita, N. 2019. Machining of Biocompatible Materials—Recent Advances. CIRP Annals. 68(2): 629-652.

Cantor, B., Chang, I. T. H., Knight, P. and Vincent, A. J. B. 2004. Microstructural Development in Equiatomic Multicomponent Alloys. Materials Science and Engineering: A. 375: 213-218.

Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H. and Chang, S. Y. 2004. Nanostructured High‐entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials. 6(5): 299-303.

Yeh, J. W. 2013. Alloy Design Strategies and Future Trends in High-entropy Alloys. Jom. 65: 1759-1771.

Wu, H., Zhang, S., Wang, Z. Y., Zhang, C. H., Chen, H. T., & Chen, J. 2022. New Studies on Wear and Corrosion Behavior of Laser Cladding FeNiCoCrMox High Entropy Alloy Coating: The Role of Mo. International Journal of Refractory Metals and Hard Materials. 102: 105721.

Cheng, J., Liu, D., Liang, X., & Chen, Y. 2015. Evolution of Microstructure and Mechanical Properties of In Situ Synthesized TiC–TiB2/CoCrCuFeNi High Entropy Alloy Coatings. Surface and Coatings Technology. 281: 109-116.

Jiang, P. F., Zhang, C. H., Zhang, S., Zhang, J. B., Chen, J., & Liu, Y. 2020. Fabrication and Wear Behavior of TiC Reinforced FeCoCrAlCu-based High Entropy Alloy Coatings by Laser Surface Alloying. Materials Chemistry and Physics. 255: 123571.

Xiao, D. H., Zhou, P. F., Wu, W. Q., Diao, H. Y., Gao, M. C., Song, M., & Liaw, P. K. 2017. Microstructure, Mechanical and Corrosion Behaviors of AlCoCuFeNi-(Cr, Ti) High Entropy Alloys. Materials & Design. 116: 438-447.

Gao, J., Jin, Y., Fan, Y., Xu, D., Meng, L., Wang, C., ... & Wang, F. 2022. Fabricating Antibacterial CoCrCuFeNi High-Entropy Alloy via Selective Laser Melting and In-situ Alloying. Journal of Materials Science & Technology. 102: 159-165.

Zhou, E., Qiao, D., Yang, Y., Xu, D., Lu, Y., Wang, J., ... & Wang, F. 2020. A Novel Cu-bearing High-entropy Alloy with Significant Antibacterial Behavior Against Corrosive Marine Biofilms. Journal of Materials Science & Technology. 46: 201-210.

Ren, G., Huang, L., Hu, K., Li, T., Lu, Y., Qiao, D., ... & Liaw, P. K. 2022. Enhanced Antibacterial Behavior of a Novel Cu-bearing High-entropy Alloy. Journal of Materials Science & Technology. 117: 158-166.

Sharma, A., McQuillan, A. J., A Sharma, L., Waddell, J. N., Shibata, Y., & Duncan, W. J. 2015. Spark Anodization of Titanium–zirconium Alloy: Surface Characterization and Bioactivity Assessment. Journal of Materials Science: Materials in Medicine. 26: 1-11.

Zhang, H., Pan, Y., & He, Y. Z. 2011. Synthesis and Characterization of FeCoNiCrCu High-entropy Alloy Coating by Laser Cladding. Materials & Design. 32(4): 1910-1915.

Wang, L., Gao, Z., Wu, M., Weng, F., Liu, T., & Zhan, X. 2020. Influence of Specific Energy on Microstructure and Properties of Laser Cladded FeCoCrNi High Entropy Alloy. Metals. 10(11): 1464.

Siddiqui, A. A., & Dubey, A. K. 2021. Recent Trends In Laser Cladding and Surface Alloying. Optics & Laser Technology. 134: 106619.

Burakowski, T., & Wierzchon, T. 1998. Surface Engineering of Metals: Principles, Equipment, Technologies. CRC Press.

Tamanna, N., Crouch, R., & Naher, S. 2019. Progress in Numerical Simulation of the Laser Cladding Process. Optics and Lasers in Engineering. 122: 151-163.

Renteria, A., Diaz, J. A., He, B., Renteria-Marquez, I. A., Chavez, L. A., Regis, J. E., ... & Lin, Y. 2019. Particle Size Influence on Material Properties of BaTiO3 Ceramics Fabricated using Freeze-form Extrusion 3D Printing. Materials Research Express. 6(11): 115211.

Said, L. A. (2020). Biosynthesis and Characterization of Silver Nanoparticles from Pantoea agglomerans and some of Their Antibacterial Activities. Al-Mustansiriyah Journal of Science. 31(3): 1-5.

Jabber, S. H., Hussain, D. H., Rheima, A. M., & Faraj, M. 2019. Comparing Study of CuO Synthesized by Bl Activity. Al-Mustansiriyah Journal of Science. 30(1): 94-8.

Al-Hashimi, A. M. 2018. Biodegradation Effect of some Bacterial Isolates on some Endocrine Disruptors (EDCS). Endocrine. 17: 01.

Kozlovskiy, A. L., Kenzhina, I. E., & Zdorovets, M. V. 2020. FeCo–Fe2CoO4/Co3O4 Nanocomposites: Phase Transformations as a Result of Thermal Annealing and Practical Application in Catalysis. Ceramics International. 46(8): 10262-10269.

Zdorovets, M. V., & Kozlovskiy, A. L. 2020. Study of Phase Transformations in Co/CoCo2O4 Nanowires. Journal of Alloys and Compounds. 815: 152450.

Jian, Y., Huang, Z., Liu, X., Sun, J., & Xing, J. 2020. Microstructure, Mechanical Properties and Toughening Mechanism of Directional Fe2B Crystal in Fe-B Alloy with Trace Cr Addition. Journal of Materials Science & Technology. 57: 172-179.

Ehsan, M. A., Hakeem, A. S., & Rehman, A. 2020. Hierarchical Growth of CoO Nanoflower Thin Films Influencing the Electrocatalytic Oxygen Evolution Reaction. Electrocatalysis. 11: 282-291.

Shen, L., & Wang, N. 2011. Effect of Nitrogen Pressure on the Structure of Cr-N, Ta-N, Mo-N, and WN Nanocrystals Synthesized by Arc Discharge. Journal of Nanomaterials. 2011: 1-5.

Pandey, V. K., Shivam, V., Sarma, B. N., & Mukhopadhyay, N. K. 2020. Phase Evolution and Thermal Stability of Mechanically Alloyed CoCrCuFeNi High Entropy Alloy. Materials Research Express. 6(12): 1265b9.

Chen, M., Xing, S., Liu, H., Jiang, C., Zhan, K., & Ji, V. 2020. Determination of Surface Mechanical Property and Residual Stress Stability for Shot-peened SAF2507 Duplex Stainless Steel by In Situ X-ray Diffraction Stress Analysis. Journal of Materials Research and Technology. 9(4): 7644-7654.

Lei, N., Li, X., Li, W., Zhang, G., Wei, R., Wang, T., ... & Chen, C. 2022. A Fe-rich Co-free High Entropy Alloy with Excellent Mechanical and Anti-bacterial Properties in Cold-rolled State. Materials Letters. 328: 133139.

Zhang, L. J., Fan, J. T., Liu, D. J., Zhang, M. D., Yu, P. F., Jing, Q., ... & Liu, R. P. 2018. The Microstructural Evolution and Hardness of the Equiatomic CoCrCuFeNi High-entropy Alloy in the Semi-solid State. Journal of Alloys and Compounds. 745: 75-83.

Jamil, N. A. B. M., Mohamaddiah, A. H. B., Azami, M. H. B., & Nordin, N. H. 2023. High Entropy Alloy as Metal Additive for Hybrid Rocket Propellant. Materials Today: Proceedings. 75: 140-146.

Aisida, S. O., Ugwu, K., Agbogu, A., Ahmad, I., Maaza, M., & Ezema, F. I. 2023. Synthesis of Intrinsic, Manganese and Magnesium Doped Cobalt Ferrite Nanoparticles: Physical Properties for Antibacterial Activities. Hybrid Advances. 100049.

Adnan, W. G., & Mohammed, A. M. 2023. Green Synthesis of Chromium Oxide Nanoparticles for Anticancer, Antioxidant and Antibacterial Activities. Inorganic Chemistry Communications. 111683.

Published

2024-09-17

Issue

Section

Science and Engineering

How to Cite

SUPERIOR ANTIBACTERIAL PROPERTIES OF COPPER-BEARING HIGH ENTROPY ALLOY COATED STAINLESS STEEL SURFACE FABRICATED USING LASER CLADDING. (2024). Jurnal Teknologi (Sciences & Engineering), 86(6). https://doi.org/10.11113/jurnalteknologi.v86.22020