Review of Electrochemical Performance of LiNiO2 and their Derivatives as Cathode Material for Lithium-ion Batteries

Authors

  • Hafizah Rajaa Shaari Faculty of Technical and Vocational Education, Sultan Idris Education University, 35900 Tg Malim, Perak, Malaysia
  • V. Sethuprakhash Department of Technology Engineering, Faculty of Technical and Vocational Education, Sultan Idris Education University,35900 Tg Malim, Perak, Malaysia

DOI:

https://doi.org/10.11113/jt.v70.2210

Keywords:

Lithium-ion batteries, lithium nickel oxide, cathode, doping

Abstract

Lithium-ion battery which widely used as portable power sources with high energy density is greatly being increased due to the development and popularity of portable electronic device and vehicle. Lithium nickel oxide (LiNiO2) and their derivatives are promising positive cathode materials for next generation of lithium-ion batteries. LiNiO2 potentially offers a higher capacity at about 200 mAh/g. However it is more difficult to synthesized stoichiometric LiNiO2 because of the loss of lithium from host structure during high temperature calcination due the high vapor pressure of lithium and capacity fade when charging up to a high voltage (> 4.0V vs Li+/Li) during deintercalation of lithium ion that affected cycling. The review is focused the electrochemical performance by substitution or effect doping of LiNiO2 and their derivative by other metals as a cathode materials for lithium ion batteries.

Author Biography

  • Hafizah Rajaa Shaari, Faculty of Technical and Vocational Education, Sultan Idris Education University, 35900 Tg Malim, Perak, Malaysia
    Department of Technology Engineering

References

B. Dunn, H. Kamath, J.-M. Tarascon. 2011. Review: Electrical Energy Storage for the Grid: A Battery of Choices. Science. 334: 928–935. DOI: 10.1126/science.1212741.

A.Väyrynen & J. Salminen. 2012. Lithium Ion Battery Production. J.Chem Thermodynamics. 46: 80–85.

A. Chen. 2007. Batteries of the Future II. Building Better Batteries Through Advanced Diagnostics. Retrieved from Science @ Berkeley Lab website http://www2.lbl.gov/Science-Articles/Archive/sabl/2007/Feb/future-batteries-II.html.

B. Xu, D. Qian, Z. Wang, Y.S. Meng.2012. Recent Progress in Cathode Materials Research for Advanced Lithium Ion Batteries. Mater. Sci. Eng. R 73: 51–65.

L. J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, H. Q. Wu.2005. Electrode Material for Lithium Secondary Batteries Prepared by Sol-gel Method. Prog. Mater. Sci. 50: 881–928.

M. Wohlfahrt-Mehren, C. Vogler, J. Garche.2004. Aging Mechanism of Lithium Cathode Materials. J. Power Sources. 127: 58–64.

Y. Nishi.1997. Something About Lithium Ion Batteries. Tokyo: Shokabo Press.

J. O. Besenhard. 1999. Handbook of Battery Materials. Weinheim: Wiley-VCH.

Y. P. Wu, C. Wan, C. Jiang, S. B. Fang. 2002. Lithium Ion Secondary Batteries. Beijing: Chemical Industry Press.

J. W. Fergus. 2010. Recent Developments in Cathode Materials for Lithium Ion Batteries. J. Power Sources. 195: 939–954.

Y. Gan, L. Zhang, Y. Wen, F. Wang, H. Su. 2008. Carbon Combustion Synthesis of Lithium Cobalt Oxide as Cathode Material for Lithium ion Battery. Particuology. 6: 81–84.

L. Zhang, X. Lv, X. Wen, F. Wang, H. Su. 2009.Carbon combustion Synthesis of LiNi0.5Mn1.5O4 and Its Use as a Cathode Material for Lithium Ion Batteries. J. Alloy Compds. 480: 802–805.

C. Li, H.P. Zhang, L. J. Fu, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu. 2006. Cathode Materials Modified by Surface Coating for Lithium Ion Batteries. Electrochimica Acta. 5: 3872–3883.

G. X. Wang, S. Bewlay, Y. Yao, Y. Chen, Z. P. Guo, H. K. Liu, S. X. Dou. 2003. Multiple-ion-doped Lithium Nickel Oxides as Cathode Materials for Lithium-Ion Batteries. J.Power Sources. 119–12: 189–194.

S. Megahed,W. Ebner. 1995. Lithium-ion Battery for Electronic Applications. J. Power Sources. 54: 155–162.

M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough, P. Grove. 1985. Synthesis and Structural Characterization of the Normal Spinel Li[Ni2]O4. Mater, Research Bull. 20: 1137.

M. Broussely, F. Perton, J. Labat, R.J. Staniewicz, A. Romero.1993. Li/LixNO2 and Li/LixCoO2 Rechargeable Systems: Comparative Study and Performance of Practical Cells. J. Power Sources. 43: 209–216.

M. Broussely, F. Perton, P. Biensen, J. M. Bodet, J. Labat, A. Lacerf. C. Delmas, A. Rougier, J. P. Peres. 1995. LixNiO2, A Promising Cathode for Rechargeable Lithium Batteries. J. Power Sources. 54: 109–114.

J. R. Dahn, U. V Sacken, M. W. Juzkow, H. Al-Janaby. 1991. Rechargeable LiNiO2/carbon Cells. J. Electrochem. Soc. 138: 2207.

T. Ohzuku, & A. Ueda. 1994. Why Transition Metal (Di)Oxides are the Most Attractive Materials for Batteries. Solid State Ionic. 69: 201–211.

R. Sathiyamoorthi, P. Manisankar, P. Shakkthivel, M. S. Lee, T. Vasudevan. 2008. Synthesis Characterization and Electrochemical Studies of LiNi0.8M0.2O2 Cathode Material for Rechargeable Lithum Batteries. Bull. Mater. Sc. 31: 441–447.

Y. D. Zhong, X. B. Zhao, G. S. Cao. 2005. Characterization of Solid-state Synthesized Pure and Doped Lithium Nickel Cobalt Oxide. Mater. Sci. Eng. B121: 248–254.

K. Chang, B. Hallstedt, D. Music. 2012. Thermodynamic Description of the LiNiO2–NiO2 Pseudo-binary System and Extrapolation to the Li(Co, Ni)O2–(Co, Ni)O2 System. Music CALPHAD: Computer Coupling of Phase Diagram and Thermochemistry. 37: 100–107.

M. Y. Song, I. H. Kwan, H. R. Park, D. R. Munn. 2012. Electrochemical Properties of Lithium Nickel Oxide Synthesized by the Combustion Method in an O2 Stream. Ceramics International. 38: 2443–2448.

S. N. Kwon, S.-D. Yoon, H. R. Park, M. Y. Song. 2010. Variation of Discharge Capacities with C-rate for LiNi1-yMyO2 (M = Ni, Ga,Al and/or Ti) Cathodes Synthesized by the Combustion Method. Ceramics International. 36: 893–898.

M. M. Doeff. 2013. Battery Cathodes. In. R.J Brodd (Ed.). Batteries for Sustainability. New York, NY: Springer. 5–49.

C. Pouillerie, F. Perton, P. H Biensan, J. P. Peres, M. Broussely, C. Delmas. 2001. Effect of Magnesium Substitution on the Cycling Behavior of Lithium Nickel Cobalt Oxide. J. Power Sources. 96: 293.

Y. Nishida, K. Nakane, T. Satoh. 1997. Synthesis and Properties of Gallium-doped LiNiO2 as the Cathode Material for Lithium Secondary Batteries. J. Power Sources. 68: 561–564.

Y. Gao, V. Yakovleva, V. Ebner.1998. Novel LiNi1 − xTix / 2Mgx / 2 O 2 Compounds as Cathode Materials for Safer Lithiumâ€Ion Batteries. Electrochem. Solid State Lett. 1: 117–119.

H. Tukamoto, & A. R. J. West. 1997. Electronic Conductivity of LiCoO2 and its Enhancement by Magnesium Doping. J. Electrochem. Soc. 144: A3164–A3168.

C. Pouillerie, L. Croguennec, C. Delmas. 2000. The LixNi1−yMgyO2 (y=0.05, 0.10) System: Structural Modifications Observed upon Cycling. Solid State Ionics. 132: 15–29.

B. Scrosati. 2000. Recent Advances in Lithium Ion Battery Materials. Electrochimica Acta. 45: 2461–2466.

T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakosho, H. Komori. 1993. Comparative Study LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt Secondary Lithium Cells. 38: 1159.

A. Rougier, I. Saadoune, P. Gravereau, P. Willman, C. Delmas. 1996. Effect of Cobalt Substitution on Cationic Distribution in LiNi1− yCoyO2 Electrode Materials. Solid State Ionics. 90: 8–90.

I. Saadoune, & C. Delmas.1996. LiNi1–yCoyO2 Positive Electrode Materials: Relationships between the Structure, Physical Properties and Electrochemical Behaviour. J. Mater. Chem. 6: 193–199.

I. Saadoune, & C. Delmas.1998. On the LixNi0.8Co0.2O2 System. J. Solid State Chem. 136: 8–15.

I. Saadoune, M. Menetrier, C. Delmas, C.1997. Redox Processes in LixNi1–yCoyO2 Cobalt-rich Phases. J. Mater. Chemi. 7: 2505–2511.

E. Zhecheva, & R. Stoyanova.1993. Stabilization of the Layered Crystal Structure of LiNiO2 by Co-substitution. Solid State Ionics. 66: 143–149.

B. V. R. Chowdari, G. V. Subba Rao, S. Y. Chow. 2001. Cathodic Behaviour of (Co, Ti, Mg)-doped LiNiO2. Solid State Ionics. 140: 55–62.

G. T. K Fey, R. F. Shiu, V. Subramaniam, J. G. Chen, C. L Chen. 2002. LiNi0.8Co0.2O2 Cathode Materials Synthesized by the Maleic Acid Assisted Sol-Gel Method for Lithium Batteries. J.Power Sources. 103: 265–272.

P. Wilk, J. Marzec, J. Molenda.2003. Structural and Electrical Properties of LiNi1-yCoyO2. Solid State Ionics. 157: 109–114.

J. Cho, H. Jung, Y. Park, G. Kim, H.S. Lim.2000. Electrochemical Properties and Thermal Stabilty of LiaNi1-xCoxO2 Cathode Materials. J. Electrochem. Soc. 147: 15–20.

S. Madhavi, G. V. Subba Rao, B. V. R. Chowdari, S. F. Y Li. 2002. Cathodic Properties of (Al,Mg) Co-doped LiNi0.7Co0.3O2. Solid State Ionics. 152–153: 199–205.

G. X. Wang, J. Horvat, D. H. Bradhurst, H. K. Liu, S. X. Dou. 2000. Structural, Physical and Electrochemical Characterisation of LiNixCo 1-xO2 Solid Solutions. J. Power Sources. 85: 279–28.

I. Nakai, & T. Nakagome. 1998. In Situ Transmission Xâ€Ray Absorption Fine Structure Analysis of the Li Deintercalation Process in Li ( Ni0.5Co0.5 )O2. Electrochem. Solid State Lett. 1: 259–261.

H. Chao, B. Xia, B., Xu, N., Zhang, C. 2004. Structural and Electrochemical characteristics of Co and Al co-doped Lithium Nickelate Cathode Materials for Lithium-ion Batteries. J.Alloy. Compd. 376: 282–286.

C. H. Chen, J. Liu. M. E. Stoll, G. Henriksen, D. R. Vissers. K. Amine. 2004. Aluminium Doped Lithium Nickel Cobalt Oxide Electrodes for High-power Lithium Ion Batteries. J. Power Sources. 128: 278–285.

M. Carewska, S. Scaccia, F. Croce, A. Arumugam, Y. A. Wang, Y. Greenbaum. 1997. Electrical Conductivity and 6,7 Li NMR Studies of Li1+ y CoO. Solid State Ionic. 93: 227–238.

J. Xiang, C. Chang, F. Zhang, J. Sun. 2009. Effect of Mg Doping on the Electrochemical Properties of LiNi0.8Co0.2 Cathode Material. J. Alloy. Compd. 475: 483–487.

S. Albrecht., J. Kumpers, M. Kruft, S. Malcus, C. Vogler, M. Wahl, M. Wohfahrt–Mehrens. 2009. Electrochemical and Thermal Behavior of Aluminium-and Magnesium-doped Spherical Lithium Nickel Cobalt Mixed Oxides Li1-x(Ni1-y-zCoyMz)O2 (M=Al, Mg. J. Power Sources. 119–121: 178–183.

H. Li, Q. Xu, X-X. Shi, D. W. Song, Q-L. Zhang. 2013. Electrochemical Performances of LiNi0.5Mn0.5O2 with Different Synthesis Methods. Rare Metals. DOI 10.1007/S12598-013-0088-2.

E. Rossen, C. D. W. Jones, J. R. Dahn. 1992. Structure and Electrochemistry of LixMnyNi1−yO2.Solid State Ionics. 57: 311.

M. E. Sphar, P. Novak, B. Schnyer, O. Haas, R. Nesper. 1998. Characterization of Layered Lithium Nickel Manganese Oxides Synthesized by a Novel Oxidative Coprecipitation Method and Their Electrochemical Performance as Lithium Insertion Electrode Material. J. Electrochem. Soc. 145(4): 1113–1121.

T. Ohzuku, &Y. Makimura. 2001. Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-ion Batteries. Chem Lett. 30: 744–745.

Z. Lu, D. D. MacNeil, J. R. Dahn. 2001. Layered Cathode Materials Li [ NixLi ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 )  ]  O 2 for Lithium-Ion Batteries. Electrochemical and Solid State Letter. 4: A191–A194.

N. Yabuuchi, & T. Ohzuku. 2005. Electrochemical Behaviors of LiCo1/3Ni1/3Mn1/3O2 in Lithium Batteries at Elevated Temperatures. J. Power Sources. 146: 636–639.

N. Kumagai, S-T. Myung, S. Komaba, K. Hosoya, K. Kurihara. 2006. Effect of Ti on Structure and Electrochemical Properties of LiNi0.5Mn0.5-xTixO2 Synthesized by Emulsion Drying Method. 208th ECS Meeting: Abstract 11.

C. Hu, J. Gua, Y. Peng, Y. Chen. 2013. Preparation and Electrochemical Performance of LiNi0.5Mn0.5O2−xFx (0 ⩽ x ⩽ 0.04) Cathode Material Synthesized with Hydroxide Co-precipitation for Lithium Ion Batteries. J. Alloy Compds. 581: 121–127.

D. Song, H. Ikuta, T. Uchida, M. Wakira.1999. The Spinel Phases LiAlyMn2−yO4 (y=0, 1/12, 1/9, 1/6, 1/3) and Li(Al,M)1/6Mn11/6O4 (M=Cr, Co) as the Cathode for Rechargeable Lithium Batteries. Solid State Ionics. 117: 151–156.

E. Shinova, H. Zecheva, R. Stoyanova.2006. Formation of LiAlyNi1−yO2 Solid Solutions Under High and Atmospheric Pressure. J. Solid State Chem. 179: 3151–3158.

T. Ohzuku, T. Yanagawa, M. Kouguchi, A. Ueda. 1997. Innovative Insertion Material of LiAl1/4Ni3/4O2 (R-m) for Lithium-ion (shuttlecock) Batteries. J. Power Sources. 68: 131–134.

M. Guilmard, A. Rougier, M. Grune, L. Croguennec, C. Delmas. 2003. Effects of Aluminum on the Structural and Electrochemical Properties of LiNiO2. J Power Sources. 115: 305–314.

M. Guilmard, C. Poullerie, L. Croguennec, C. Delmas.2003. Structural and Electrochemical Properties of LiNi0.70Co0.15Al0.15O2.Solid State Ionics. 160: 39–50.

J. Kim, B. H. Kim, Y. H. Baik, P. K. Chang, H. S. Park, K. Amine. 2006. Effect of (Al, Mg) Substitution in LiNiO2 Electrode for Lithium Batteries. J. Power Sources. 158: 641–645.

S. Castro-Gracia, A. Castro-Cauceiro, M. A. Senaris-Rodrigues, F. Soulette, C., Julien. 2003. Influence of Aluminium Doping on the Properties of LiCoO2 and LiNiCo0.5O2 Oxides. Solid State Ionics. 156: 15–26.

C. Delmas, G. Prado, A. Rougier, E. Suard, L. Fournes. 2000. Effect of Iron on the Electrochemical Behavior of Lithium Nickelate: from LiNiO2 to 2D-LiFeO. Solid State Ionics. 135: 71–79.

V. Sethuprakhash. 2005. Structural and Electrochemical Studies of Lithium Nickel Oxide Derivatives Doped with Transition and Non-Transition Metals Prepared by Solid-State Reaction Method. University of Malaya, Kuala Lumpur.

J. W. Jeong, & S.-G. Kang. 2003. Structural and Electrochemical Properties of LiNiyTi1-yO2 Prepared by a Wet Process. Journal of Power Sources. 123: 75–78.

H.-W. Ha, K. H Jeong, K. Kim. 2006. Effect of Titanium Substitution in Layered LiNO2 Cathode Materials Prepared by Molten-salt Synthesis. J. Power Sources. 161: 606–611.

M. Y. Song, C. K. Park, S. D. Yoon, H. R. Park, D. R. Munn. 2009. Electrochemical Properties LiNi1-yMyO2 (M= Ni, Ga, Al and/or Ti) Cathode. Ceramics International. 35: 1145–1150.

P. Cui, Z. Jia, L. Li, T. He. 2011. Preparation and Characteristic of Sb-doped LiNiO2 Cathode Materials for Li-ion Batteries. Journal of Physics and Chemistry of Solid. 72: 899–903.

G. Prado, A. Rougier, L. Fournes, C. Delmas. 2000. J. Electrochem. Soc. 147(8): 2880.

M. Y. Song, I. H. Kwon, H. U. Kim, S. Shim, D. R. Mumm. 2006. J. Appl. Electrochem. 36: 801.

M. Y. Song, R. Lee. 2002. Synthesis by Sol-gel Method and Electrochemical Properties of LiNiO2 Cathode Material for Lithium Secondary Battery. J. Power Sources. 111: 97–103.

D. S. Lee. 2004. A Study on the Synthesis and the Electrochemical Properties of LiNi1yMyO2 (M = Zn2+, A13+ and Ti4+) Cathode Materials for Lithium Secondary Battery. Master Thesis, Chonbuk National University, Republic of Korea.

M. Y. Song, I. H. Kwon, S. Shim, J. H. Song. 2010. Electrochemical Characterizations of Fe-substituted LiNiO2 synthesized in air by combustion method. Ceramics International. 36: 1225–1231.

Downloads

Published

2014-08-27

Issue

Section

Science and Engineering

How to Cite

Review of Electrochemical Performance of LiNiO2 and their Derivatives as Cathode Material for Lithium-ion Batteries. (2014). Jurnal Teknologi, 70(1). https://doi.org/10.11113/jt.v70.2210