TEMPERATURE MONITORING FOR LASER METAL DEPOSITION USING NEAR-INFRARED SPECTROSCOPY

Authors

  • Siti Qistina Arora Talib Laser Centre, Ibnu-Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Aneez Syuhada Mangsor Laser Centre, Ibnu-Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Abdul Rahman Johari Laser Centre, Ibnu-Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Muhammad Safwan Abd Aziz Laser Centre, Ibnu-Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Ganesan Krishnan Laser Centre, Ibnu-Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.22113

Keywords:

Laser Metal Deposition (LMD), temperature monitoring, thermal radiation, near-infrared (NIR) spectroscopy, Planck’s Law

Abstract

Temperature monitoring during laser metal deposition (LMD) aids process control to ensure high-quality production. However, the fluctuating emissivity of the melt pool limits the accuracy of the existing non-contact temperature measuring devices. Thus, this work explores a new temperature monitoring technique, where the thermal radiation emitted by the processing zone was collected with a near-infrared (NIR) spectrometer and fitted to Planck's law to determine the temperature. This work has established the optimised angle and distance of the fiber probe from the LMD processing area to maximise the spectral signal acquisition. The temperature determined from the technique was cross-validated with a thermocouple, resulted in a small deviation of 2.39%. The applicability of the spectroscopic method for continuous temperature monitoring of the LMD process has been demonstrated. The optimised placement for the fiber probe end was determined at the 45˚ angle relative to the surface of the substrate and positioned 5 cm away from the molten pool. The temperature during the LMD process decreased gradually then stabilised after approximately 17 mm track length, resembling those reports in prior studies. Our findings support the practicality of the proposed temperature monitoring approach in LMD.

References

Wanjara, P., Backman, D., Sikan, F., Gholipour, J., Amos, R., Patnaik, P., et al. 2022. Microstructure and Mechanical Properties of Ti-6Al-4V Additively Manufactured by Electron Beam Melting with 3D Part Nesting and Powder Reuse Influences. Journal of Manufacturing and Materials Processing. 16(1): 21.

Doi: https://doi.org/10.3390/jmmp6010021.

Zhang, L. C., Chen, L. Y., Zhou, S., Luo, Z. 2023. Powder Bed Fusion Manufacturing of Beta-type Titanium Alloys for Biomedical Implant Applications: A Review. J Alloys Compd. 936: 168099.

Doi: https://doi.or g/10.1016/j.jallcom.2022.168099.

Diegel, O., Nordin, A., Motte, D. 2019. A Practical Guide to Design for Additive Manufacturing. Singapore: Springer Singapore.

Doi: https://doi.org/10.1007/978-981-13-8281-9.

Frazier, W. E. 2014. Metal Additive Manufacturing: A Review. J Mater Eng Perform. 8: 23(6): 1917-28.

Doi: https://doi.org/10.1007/s11665-014-0958-z.

Koshy, P. 1985. Laser Cladding Techniques for Application to Wear and Corrosion Resistant Coatings. In: Jacobs, R. R., (Ed.). 80. Doi: https://doi.org/10.1117/12.946398.

Smoqi, Z., Toddy, J., Halliday, H. (Scott), Shield, J. E., Rao, P. 2021. Process-structure Relationship in the Directed Energy Deposition of Cobalt-chromium Alloy (Stellite 21) coatings. Mater Des. 197: 109229.

Doi: https://doi.org/10.1016/j.matdes.2020.109229.

Brandt, M., Sun, S., Alam, N., Bendeich, P., Bishop, A. 2009. Laser Cladding Repair of Turbine Blades in Power Plants: From Research to Commercialisation. International Heat Treatment and Surface Engineering. 13(3): 105-14.

Doi: https://doi.org/10.1179/174951409X12542264513843.

Graf, B., Gumenyuk, A., Rethmeier, M. 2012. Laser Metal Deposition as Repair Technology for Stainless Steel and Titanium Alloys. Phys Procedia. 39: 376-81.

Doi: https://doi.org/10.1016/j.phpro.2012.10.051.

Torims, T. 2013. The Application of Laser Cladding to Mechanical Component Repair. Renovation and Regeneration. 587-608.

Doi: https://doi.org/10.2507/daaam.scibook.2013.32.

Gnanamuthu, D. 1980. S. Laser Surface Treatment. Optical Engineering. 19(5): 783-92.

Doi: https://doi.org/10.1117/12.7972604.

Eboo, G. M., Lindemanis, A. E. 1985. Advances in Laser Cladding Process Technology. In: Applications of High Power Lasers. SPIE. 86-94.

Doi: https://doi.org/10.1117/12.946399.

Vetter, P. A., Fontaine, J., Engel, T., Lagrange, L., Marchione, T. 1970. Characterization of Laser-material Interaction during Laser Cladding Process. WIT Transactions on Engineering Sciences. 2.

Tang, L., Landers, R. G. 2010. Melt Pool Temperature Control for Laser Metal Deposition Processes-Part I: Online Temperature Control. J. Manuf. Sci. Eng. 132(1): 011010

Doi: https://doi.org/10.1115/1.4000882.

Bi, G., Gasser, A., Wissenbach, K., Drenker, A., Poprawe, R. 2006. Characterization of the Process Control for the Direct Laser Metallic Powder Deposition. Surf Coat Technol. 201(6): 2676-83.

Doi: https://doi.org/10.1016/j.surfcoat.2006.05.006.

Yamashita, Y., Ilman, K. A., Kunimine, T., Sato, Y. 2023. Temperature Evaluation of Cladding Beads and the Surrounding Area during the Laser Metal Deposition Process. Journal of Manufacturing and Materials Processing. 7(6): 192.

Doi: https://doi.org/10.3390/jmmp7060192.

Mazzarisi, M., Campanelli, S. L., Angelastro, A., Palano, F., Dassisti, M. 2021. In situ Monitoring of Direct Laser Metal Deposition of a Nickel-based Superalloy using Infrared Thermography. The International Journal of Advanced Manufacturing Technology. 112: 157-73.

Doi: https://doi.org/10.1007/s00170-020-06344-0.

Yan, Z., Liu, W., Tang, Z., Liu, X., Zhang, N., Li, M., et al. 2018. Review on Thermal Analysis in Laser-based Additive Manufacturing. Opt Laser Technology. 106: 427-41.

Doi: https://doi.org/10.1016/j.optlastec.2018.04.034.

L. Qin, K. Wang, X. Li, S. Zhou, and G. Yang. 2022. Review of the Formation Mechanisms and Control Methods of Geometrical Defects in Laser Deposition Manufacturing. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers. 1(4): 100052.

Doi: https://doi.org/10.1016/j.cjmeam.2022.100052Y.

Y. N. Kulchin et al. 2022. Melt Pool Temperature Control in Laser Additive Process. Bulletin of the Russian Academy of Sciences: Physics. 86(Suppl 1): S108-S113.

Doi: https://doi.org/10.3103/S1062873822700496.

C. Zheng, J. T. Wen, and M. Diagne. 2020. Distributed Temperature Control in Laser-based Manufacturing. J Dyn Syst Meas Control. 142(6).

Doi: 10.1115/1.4046154.

Muvvala, G., Karmakar, D. P., Nath, A. K. 2017. Online Monitoring of Thermo-cycles and Its Correlation with Microstructure in Laser Cladding of Nickel Based Super Alloy. Opt Lasers Eng. 88: 139-52.

Doi: https://doi.org/10.1016/j.optlaseng.2016.08.005.

Ju, H., Xu, P., Lin, C., Sun, D. 2015. Test and Temperature Field of Finite Element Simulation about the Effect of Scanning Speed on 304 Stainless Layer's Properties by Laser Cladding. Materials Research Innovations. 19(sup8): S8-9.

Doi: https://doi.org/10.1179/1432891715Z.0000000001605.

Manvatkar, V., De A, DebRoy, T. 2015. Spatial Variation of Melt Pool Geometry, Peak Temperature and Solidification Parameters during Laser Assisted Additive Manufacturing Process. Materials Science and Technology. 31(8): 924-30.

Doi: https://doi.org/10.1179/1743284714Y.0000000701.

Gu, D., Yuan, P. 2015. Thermal Evolution Behavior And Fluid Dynamics during Laser Additive Manufacturing of Al-based Nanocomposites: Underlying Role of Reinforcement Weight Fraction. J Appl Phys. 118(23).

Doi: https://doi.org/10.1063/1.4937905.

Doubenskaia, M., Pavlov, M., Grigoriev, S., Smurov, I. 2013. Definition of Brightness Temperature and Restoration of True Temperature in Laser Cladding using Infrared Camera. Surf Coat Technol. 220: 244-7.

Doi: https://doi.org/10.1016/j.surfcoat.2012.10.044.

Mazzarisi, M., Angelastro, A., Latte, M., Colucci, T., Palano, F., Campanelli, S. L. 2023. Thermal Monitoring of Laser Metal Deposition Strategies using Infrared Thermography. J Manuf Process. 85: 594-611.

Doi: https://doi.org/10.1016/j.jmapro.2022.11.067.

Altenburg, S. J., Straße, A., Gumenyuk, A., Maierhofer, C. 2022. In-situ Monitoring of a Laser Metal Deposition (LMD) Process: Comparison of MWIR, SWIR and High-speed NIR Thermography. Quant Infrared Thermogr J. 19(2): 97-114.

Doi: https://doi.org/10.1080/17686733.2020.1829889.

Nair, A. M., Muvvala, G., Sarkar, S., Nath, A. K. 2020. Real-time Detection of Cooling Rate using Pyrometers in Tandem in Laser Material Processing and Directed Energy Deposition. Mater Lett. 277: 128330.

Doi: https://doi.org/10.1016/j.matlet.2020.128330.

Galkin, G., Gawade, V., Guo, W., Yi, J., Guo, Y. B. 2022. In-Situ and Real-Time 3D Pyrometry for Thermal History Diagnosis in Laser Fusion Process. Manuf Lett. 33: 862-71.

Doi: https://doi.org/10.1016/j.mfglet.2022.07.106.

Ya, W. 2015. Laser Materials Interactions during Cladding: Analyses on Clad Formation, Thermal Cycles, Residual Stress and Defects. PhD Thesis. Faculty of Engineering Technology.

Koruba, P., Ćwikła, M., Zakrzewski, A., Jurewicz, P., Reiner, J. Spectral analysis of thermal emission from melt pool during laser material processing. Technical Paper and Presentations. Wroclaw University of Science and Technology, Wrocław, Poland.

De Baere, D., Devesse, W., De Pauw, B., Smeesters, L., Thienpont, H., Guillaume, P. 2016. Spectroscopic Monitoring and Melt Pool Temperature Estimation during the Laser Metal Deposition Process. J Laser Appl. 28(2).

Doi: https://doi.org/10.2351/1.4943995.

De La Batut, B., Fergani, O., Brotan, V., Bambach, M., El Mansouri, M. 2017. Analytical and Numerical Temperature Prediction in Direct Metal Deposition of Ti6Al4V. Journal of Manufacturing andMaterials Processing. 1(1): 3.

Doi: https://doi.org/10.3390/jmmp1010003.

Published

2024-09-17

Issue

Section

Science and Engineering

How to Cite

TEMPERATURE MONITORING FOR LASER METAL DEPOSITION USING NEAR-INFRARED SPECTROSCOPY. (2024). Jurnal Teknologi (Sciences & Engineering), 86(6). https://doi.org/10.11113/jurnalteknologi.v86.22113