PERFORMANCE ANALYSIS OF ELECTROMAGNETIC VIBRATION ENERGY HARVESTING DUE TO DIFFERENT VIBRATION SOURCES
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.22145Keywords:
Vibration energy harvesting, Electromagnetic, Vibration source, Frequency, VoltageAbstract
As industry requires more real-time monitoring and interconnected systems, the need for wireless sensors will increase. Vibration Energy Harvesting (VEH) has played an important role as an alternative energy source to provide power to wireless sensors. In this paper we report the analysis of an electromagnetic energy harvester driven by vibrating plate. An experimental method where energy sources originating from vibrating mechanical machines were used. Mechanical machines such as milling machines, dynamic rotors, and four-stroke engines were implemented to prove the performance of the device. where the output signal from the vibration source is measured using a CF-3600 FFT analyzer, while the output signal from the electromagnet is measured using an oscilloscope (Hantek 6022BE). This paper has discussed several sources of vibration originating from industrial equipment with a vibration source frequency of around 10 to 100 Hz. The findings show that the voltage produced by an electromagnetic energy harvester is 130 mV, 120 mV, and 30 mV on a milling machine, dynamic rotor, and four-stroke engine. Additionally, the results contribute to the optimization of vibration energy harvesting parameters, facilitating the maximization of energy extraction in diverse applications.
References
M. Iqbal, M. M. Nauman, F. U. Khan, P. E. Abas, Q. Cheok, A. Iqbal, and B. Aissa. 2021. Vibration‐based Piezoelectric, Electromagnetic, and Hybrid Energy Harvesters for Microsystems Applications: A Contributed Review. International Journal of Energy Research. 45(1): 65-102. https://doi.org/10.1002/er.5643.
H. K. Sandhu, S. S. Bodda, E. Yan, P. Sabharwall and A. Gupta. 2024. A Comparative Study on Deep Learning Models for Condition Monitoring of Advanced Reactor Piping Systems. Mechanical Systems and Signal Processing. 209. https://doi.org/10.1016/j.ymssp.2023.111091.
B. Han, S. Vassilaras, C. B. Papadias, R. Soman, M. A. Kyriakides, T. Onoufriou, ... & R. Prasad. 2013. Harvesting Energy from Vibrations of the Underlying Structure. Journal of Vibration and Control. 19(15): 2255-2269. https://doi.org/10.1177/1077546313501537.
K. T. Prajwal, K. Manickavasagam, and R. Suresh. 2022. A Review on Vibration Energy Harvesting Technologies: Analysis and Technologies. The European Physical Journal Special Topics. 231(8): 1359-1371. https://doi.org/10.1140/epjs/s11734-022-00490-0.
H. Cao, L. Kong, M. Tang, Z. Zhang, X. Wu, L. Lu, & D. Li. 2023. An Electromagnetic Energy Harvester for Applications in a High-speed Rail Pavement System. International Journal of Mechanical Sciences. 243. https://doi.org/10.1016/j.ijmecsci.2022.108018.
G. Despesse, J. J. Chaillout, S. Boisseau, and C. Jean-Mistral. 2012. Mechanical Energy Harvesting. Energy Autonomous Micro and Nano Systems. 115-151. Doi 10.1002/9781118561836.ch5.
A. Muscat, S. Bhattacharya, and Y. Zhu. 2022. Electromagnetic Vibrational Energy Harvesters: A Review. Sensors. 22(15). https://doi.org/10.3390/s22155555.
S. H. Chae, S. Ju, Y. Choi, S. Jun, S. M. Park, S. Lee, ... and C. H. Ji. 2013. Electromagnetic Vibration Energy Harvester using Springless Proof Mass and Ferrofluid as a Lubricant. Journal of Physics: Conference Series. 476(1). Doi: 10.1088/1742-6596/476/1/012013.
P. Lv, C. Fan, A. Yang, H. Yuan, J. Chu, M. Rong, and X. Wang. 2023. Research on Vibration Energy Harvesting Technology of Power Equipment based on Alternating Magnet Array. High Voltage. https://doi.org/10.1049/hve2.12367.
M. Li, X. Li, C. Gan, J. Zeng, L. Zhao, H. Ding, ... & H. Zou. 2023. Human Motion Energy Harvesting Backpack using Quasi-zero Stiffness Mechanism. Energy Conversion and Management. 288. https://doi.org/10.1016/j.enconman.2023.117158.
A. Barua, G. P. Bhadra, and M. S. Rasel. 2020. Energy Harvesting from Water Wave Using Electromagnetic Generator. 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI). 1-5. Doi: 10.1109/STI50764.2020.9350464.
Y. Li, C. Zhou, Q. Cao, X. Wang, D. Qiao, and K. Tao, 2021. Electromagnetic Vibration Energy Harvester with Tunable Resonance Frequency based on Stress Modulation of Flexible Springs. Micromachines. 12(9). https://doi.org/10.3390/mi12091130.
M. M. Ahmad, and F. U Khan. 2021. Dual Resonator-type Electromagnetic Energy Harvester for Structural Health Monitoring of Bridges. Journal of Bridge Engineering. 26(5). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001702.
T. Wang, and S. Zhu. 2022. Analysis and Experiments of a Pendulum Vibration Energy Harvester with a Magnetic Multi-stable Mechanism. IEEE Transactions on Magnetics. 58(8): 1-7. Doi: 10.1109/TMAG.2022.3180834.
Subekti, H. L. Guntur, V. S. Djanali, and A. Syaifudin. 2022. Simulation and Dynamic System Modeling in an Elastically Supported Rigid Cylinder for Vibration Energy Harvesting. Recent Advances in Renewable Energy Systems. Lecture Notes in Electrical Engineering. 876. Springer, Singapore. https://doi.org/10.1007/978-981-19-1581-9_7.
R. E. Pawinanto, J. Yunas, A. Alwani, N. Indah, and S. Alva. 2019. Electromagnetic Micro-actuator with Silicon Membrane for Fluids Pump in Drug Delivery System. International Journal of Mechanical Engineering and Robotics Research. 8(4). Doi: 10.18178/ijmerr.8.4.576-579.
G. Sani, B. Balaram, G. Kudra, and J. Awrejcewicz. 2024 Energy Harvesting from Friction-induced Vibrations in Vehicle Braking Systems in the Presence of Rotary Unbalances. Energy. 289. https://doi.org/10.1016/j.energy.2023.130007.
G. S. Chung, and K. I. Ryu. 2011. Design and Analyses of Vibration Driven Electromagnetic Energy Harvester with High Power Generation at Low Frequency. Journal of Sensor Science and Technology. 20(1): 25-29. https://doi.org/10.5369/JSST.2011.20.1.25.
K. Muhamad, K., & S. Subekti. 2023. Analysis of Material Incision in Milling Machine Against Workpiece by Vibration Method. JTTM: Jurnal Terapan Teknik Mesin. 4(2): 127-136. https://doi.org/10.37373/jttm.v4i2.552.
Z. Wang, H. Du, W. Wang, Q. Zhang, F. Gu, A. D. Ball, ... & D. Shi. 2024. A High Performance Contra-rotating Energy Harvester and Its Wireless Sensing Application Toward Green and Maintain Free Vehicle Monitoring. Applied Energy. 356. https://doi.org/10.1016/j.apenergy.2023.122370.
E. Y. Agustin, S. Subekti, and D. A. Saputra. 2023. Identification of Misfiring in Engine 1000cc using Fast Fourier Transform Analysis. JTTM: Jurnal Terapan Teknik Mesin. 4(2): 148-155. https://doi.org/10.37373/jttm.v4i1.359.
V. S. Djanali. 2024. Identification of Nonlinear System for Elastically Supported Cylinder on Cross-Flow Using Wavelet Transform. Jordan Journal of Mechanical and Industrial Engineering. 18(1): 89-97. https://doi.org/10.59038/jjmie/180107.
A. Hamid. 2011. The Investigation of the Effect of Heaving and Pitching on Wave-induced Vertical Hull Vibration of a Container Ship in Regular Waves. Journal of Mechanics Engineering and Automation. 1(6): 491-496,
A. Susanto, S. Q. Yusuf, A. Hamid, H. Wahyudi, and S. Subekti. 2019. Implementation of Frequency Response Function on Tapper Bearing Maintenance. Sinergi. 23(2): 132-138.
M. A. Pratiwi, M. Ikhsan, R. D. Octavianto, A. Hamid, and S. Subekti. 2021. Dynamic Characterization of Ball Bearing in Turbine Propeller using Bump Test Method. Sinergi. 25(2): 135-140.
Nur Indah, Jumril Yunas, Azrul Azlan Hamzah, Rhonira Latif, Nanang Sudrajat, Subekti, and Ida Hamidah. 2023. Structural Performance and Evaluation of PDMS-Based Planar Membrane for Electromagnetic Vibration Energy Harvester (EM-VEH). International Journal of Nanoelectronics and Materials. 16: 385-393. https://doi.org/10.58915/ijneam.v16iDECEMBER.419.
S. Subekti, M. N. Hidayat, B. D. Efendi, A. Hamid, and A. Murwanto. 2022. Hilbert Transform Analyzer for Mechanical Fault Detection of Vehicle Alternators. Automotive Experiences. 3(3): 89-95. https://doi.org/10.31603/ae.v3i3.3834.
K. Kucab, G. Górski, J. Mizia. 2015. Energy Harvesting in the Nonlinear Electromagnetic System. The European Physical Journal Special Topics. 224: 2909-2918. https://doi.org/10.1140/epjst/e2015-02597-1.
S. P. Beeby, L. Wang, D. Zhu, A. S. Weddell, G. V. Merrett, B. Stark, ... and B. M. Al-Hashimi. 2013. A Comparison of Power Output from Linear and Nonlinear Kinetic Energy Harvesters using Real Vibration Data. Smart Materials and Structures. 22(7). Doi:10.1088/0964-1726/22/7/075022.
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.