THE EFFECT OF CRYSTALLIZATION AND AGING TIME IN ZEOLITE SYNTHESIS USING COAL FLY ASH AS SILICA AND ALUMINA SOURCE

Authors

  • Abdul Aziz Department of Chemistry, University of Jambi, Jambi, 36361, Indonesia
  • Rahmi Department of Chemistry, University of Jambi, Jambi, 36361, Indonesia
  • Lenny Marlinda Department of Industrial Chemistry, University of Jambi, Jambi, 36361, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22254

Keywords:

Aging time, coal fly ash, crystallization time, silica and alumina source, synthesis zeolite

Abstract

Silica and alumina were extracted from coal fly ash (CFA) using a reflux method with an alkaline solution. The resulting coal fly ash extract (CFAE) served as the primary material for synthesizing zeolites through a hydrothermal method at 150°C, with variations in crystallization time (ranging from 10 to 120 hours) and aging time (ranging from 0 to 24 hours). Hence, this study aims to utilize CFA waste to synthesize zeolite without adding external silica and alumina while evaluating the optimal crystallization and aging time synthesis conditions using the hydrothermal method. XRF characterization revealed increased alumina and silica composition in CFAE, from 16.7669% and 30.8462% to 42.04% and 53.42%, respectively. Analysis of FTIR spectra showed characteristic absorptions indicative of zeolite structures, while XRD data analysis confirmed the presence of zeolite ZK-14 (SOD) phase in all synthesized samples. The %yield, crystallinity, and particle size of the synthesized materials were significantly influenced by variations in crystallization and aging times. %Yield showed slight variation, with the highest achieved at 48 hours of crystallization time (37.83%). Crystallinity increased with prolonged crystallization time, peaking at 72 hours (50.73%), while particle size reached its maximum at 120 hours (23.82 nm). Aging time exhibited an inverse relationship with crystallinity and particle size but did not affect %yield. Overall, longer crystallization times led to higher %yield, crystallinity, and larger particle size in the synthesized zeolite materials.

References

Miricioiu, M. G. and Niculescu, V. C. 2020. Fly Ash, from Recycling to Potential Raw Material for Mesoporous Silica Synthesis. Nanomaterials. 10(3): 1–14. https://doi.org/10.3390/nano10030474.

Luo, Y., Y. Wu, S. Ma, S. Zheng, Y. Zhang and P. K. Chu. 2021. Utilization of Coal Fly Ash in China: A Mini-review on Challenges and Future Directions. Environmental Science and Pollution Research. 28(15): 18727–18740. https://doi.org/10.1007/s11356-020-08864-4.

Vilakazi, A.Q., S. Ndlovu, L. Chipise and A. Shemi. 2022. The Recycling of Coal Fly Ash: A Review on Sustainable Developments and Economic Considerations. Sustainability (Switzerland). 14(4): 1–32. https://doi.org/10.3390/su14041958.

Ndlovu, N. Z. N. 2016. Synthesis of Zeolite (ZSM-5 and Faujasite) and Geopolymer from South African Coal Fly Ash. MSc Dissertation. Department of Mechanical Engineering, Cape Peninsula University of Technology. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001212.

Zahro, A., S. Amalia, T. K. Adi and N. Aini. 2014. Sintesis dan Karakterisasi Zeolit Y dari Abu Ampas Tebu Variasi Rasio Molar SiO2/Al2O3 dengan Metode Sol Gel Hidrotermal. Alchemy. 3(2): 108–117. https://doi.org/10.18860/al.v0i1.2912.

Chen, X., R. Jiang, Y. Gao, Z. Zhou, and X. Wang. 2021. Synthesis of Nano-ZSM-5 Zeolite Via a Dry Gel Conversion Crystallization Process and its Application in MTO Reaction. CrystEngComm. 23(15): 2793–2800. https://doi.org/10.1039/D1CE00162K.

Kumaran, S., A. Kamari, A. A. Abdulrasool, S. T. S. Wong, J. Jumadi, S. N. M. Yusoff and S. Ishak. 2019. Synthesis, Characterisation and Mechanism of Novel Ca-ZSM-5 Zeolite Nanocomposite from Eggshell using Simple Co-Precipitation Method. Journal of Physics: Conference Series. 1397(1): 1–8. https://doi.org/10.1088/1742-6596/1397/1/012030.

Ren, X., R. Qu, S. Liu, H. Zhao, W. Wu, H. Song, C. Zheng, X. Wu, and X. Gao. 2020. Synthesis of Zeolites from Coal Fly Ash for the Removal of Harmful Gaseous Pollutants: A Review. Aerosol and Air Quality Research. 20(5): 1127–1144. https://doi.org/10.4209/aaqr.2019.12.0651.

Grewal, A. S., K. Karunesh, R. Sonika, and S. Bhardwaj. 2013. Microwave Assisted Synthesis: A Green Chemistry Approach. International Research Journal of Pharmaceutical and Applied Sciences (IRJPAS). 3(5): 278–285.

Mgbemere, H.E., I. C. Ekpa, G. I. Lawal, I. C. Ekpe and G. I. Lawal. 2017. Zeolite Synthesis, Characterisation and Application Areas: A Review. International Research Journal Environmental Sciences. 6(10): 45–59.

Huang, D., X. Hu, C. Zhao, Y. Wu, J. Zhou, C. Liu, J. Yun, D. Chen, J. Dai, C. Cen and Z. Chen. 2020. Synthesis of Mesoporous ZSM-5 Zeolite and its Adsorption Properties for VOCs. IOP Conference Series Earth Environmental Sciences. 514(5): 1–7. https://doi.org/10.1088/1755-1315/514/5/052008.

Feng, R., K. Chen, X. Yan, X. Hu, Y. Zhang and J. Wu. 2019. Synthesis of ZSM-5 Zeolite Using Coal Fly Ash as an Additive for the Methanol to Propylene (MTP) Reaction. Catalysts, 9(788): 1–13. https://doi.org/10.3390/catal9100788.

Krisnandi, Y.K., F. M. Yanti and S. D. D. Murti. 2017. Synthesis of ZSM-5 Zeolite from Coal Fly Ash and Rice Husk: Characterization and Application for Partial Oxidation of Methane to Methanol. IOP Conf. Series: Materials Science and Engineering. 188(1): 1–6. https://doi.org/10.1088/1757-899X/188/1/012031.

Adeleye, A.T., K. I. John, P. G. Adeleye, A. A. Akande and O. O. Banjoko. 2021. One-Dimensional Titanate Nanotube Materials: Heterogeneous Solid Catalysts for Sustainable Synthesis of Biofuel Precursors/Value-Added Chemicals - A Review. Journal of Material Sciences. 56(33): 18391–18416. https://doi.org/10.1007/s10853-021-06473-1.

Jha, B., and D. N. Singh. 2016. Fly Ash Zeolites: Innovations, Application and Directions. Singapore: Springer. https://doi.org/10.1007/978-981-10-1404-8.

Aldahri, T., J. Behin, H. Kazemian and S. Rohani. 2016. Synthesis of Zeolite Na-P from Coal Fly Ash by Thermo-sonochemical Treatment. Fuel. 182: 494–501. https://doi.org/10.1016/j.fuel.2016.06.019.

Liu, Y., Q. Luo, G. Wang, X. Li and P. Na. 2018. Synthesis and Characterization of Zeolite from Coal Fly Ash. Material Research Express. 5(5): 1–10. https://doi.org/10.1088/2053-1591/aac3ae.

Fitria, D., L. Marlinda, Rahmi, Y. M. Wulandari and M. Al-Muttaqii. 2021. The Effect of Aging Time on ZSM-5 Production from Siliceous Palm Oil Fly Ash. ARPN Journal of Engineering and Applied Sciences. 16(22): 2299–2304.

Hamid, A., D. Prasetyo, T. E. Purbaningtias, F. Rohmah and I. D. Febriana. 2020. Pengaruh Tahap Kristalisasi pada Sintesis ZSM-5 Mesopori dari Kaolin Alam. Indonesian Journal of Chemical Analysis. 3(2): 40–49. https://doi.org/10.20885/ijca.vol3.iss2.art1.

Hartanto, D., T. E. Purbaningtias, H. Fansuri and D. Prasetyoko. 2011. Karakterisasi Struktur Pori dan Morfologi ZSM-5 Mesopori yang Disintesis dengan Variasi Waktu Aging Pore Structure and Morphology Characterizations of Mesoporous ZSM-5 Synthesized at Various Aging Time. Jurnal Ilmu Dasar. 12(1): 80–90.

Widayat, W., and A. N. Annisa. 2017. The Effect of Adding CTAB Template in ZSM-5 Synthesis. Proceedings of the 3rd International Symposium on Applied Chemistry, Jakarta, Indonesia. 1–8. https://doi.org/10.1063/1.5011918.

Dhaneswara, D., J. F. Fatriansyah, F. W. Situmorang and A. N. Haqoh. 2020. Synthesis of Amorphous Silica from Rice Husk Ash: Comparing HCl and CH3COOH Acidification Methods and Various Alkaline Concentrations, International Journal of Technology. 11(1): 200–208. https://doi.org/10.14716/ijtech.v11i1.3335.

Azat, S., Z. Sartova, K. Bekseitova and K. Askaruly. 2019. Extraction of High-purity Silica from Rice Husk via Hydrochloric Acid Leaching Treatment. Turkish Journal of Chemistry. 43(5): 1258–1269. https://doi.org/10.3906/kim-1903-53.

Wang, Q., S. Xu, J. Chen, Y. Wei, J. Li, D. Fan, Z. Yu, Y. Qi, Y. He, S. Xu, C. Yuan, Y. Zhou, J. Wang, M. Zhang, B. Su and Z. Liu. 2014. Synthesis of Mesoporous ZSM-5 Catalysts using Different Mesogenous Templates and Their Application in Methanol Conversion For Enhanced Catalyst Lifespan. RSC Advances. 4(41): 21479–21491. https://doi.org/10.1039/C4RA02695K.

Ediati, R., A. Mukminin and N. Widiastuti. 2017. Impregnation of Nickel on Mesoporous ZSM-5 Templated Carbons as Candidate Material for Hydrogen Storage, Indonesian Journal of Chemistry. 17(1): 30–36. https://doi.org/10.22146/ijc.23563.

Missengue, R. N. M., P. Losch, N. M. Musyoka, B. Louis, P. Pale and L. F. Petrik. 2018. Conversion of South African Coal Fly Ash into High-purity ZSM-5 Zeolite without Additional Source of Silica or Alumina and Its Application as a Methanol-to-olefins Catalyst. Catalysts. 8(4): 1–14. https://doi.org/10.3390/catal8040124.

Nyankson, E., J. K. Efavi, A. Yaya, G. Manu, K. Asare, J. Daafuor and R. Y. Abrokwah. 2018. Synthesis and Characterisation of Zeolite-A and Zn-Exchanged Zeolite-A Based on Natural Aluminosilicates and Their Potential Applications. Cogent Engineering. 5(1): 1–23. https://doi.org/10.1080/23311916.2018.1440480.

Byrappa, K. and B. V. S. Kumar. 2007. Characterization of Zeolites by Infrared Spectroscopy. Asian Journal of Chemistry. 9(6): 4933–4935.

Ma, Y. K., S. Rigolet, L. Michelin, J. L. Paillaud, S. Mintova, F. Khoerunnisa, T. J. Daou and N. P. Ng. 2021. Facile and Fast Determination of Si/Al Ratio of Zeolites Using FTIR Spectroscopy Technique. Microporous and Mesoporous Materials. 311(110683): 1–4. https://doi.org/10.1016/j.micromeso.2020.110683.

Li, C., X. Li, Q. Zhang, L. Li and S. Wang. 2021. The Alkaline Fusion-Hydrothermal Synthesis of Blast Furnace Slag-Based Zeolite (BFSZ): Effect of Crystallization Time. Minerals, 11(12): 1–11. https://doi.org/10.3390/min11121314.

Nguyen, D. K., V. P. Dinh, N. T. Dang, D. T. Khan, N. T. Hung and N. H. T. Tran. 2023. Effects of Aging and Hydrothermal Treatment on the Crystallization of ZSM-5 Zeolite Synthesis from Bentonite. RSC Advances. 13(30): 20565–20574. https://doi.org/10.1039/D3RA02552G.

Abdul-Moneim, M., A. A. Abdelmoneim, A. A. Geies and S. O. Farghaly. 2018. Synthesis, Characterization of Analcime and Its Application in Water Treatment from Heavy Metal. Assiut University Bulletin fo Environmental Researchers, 21(1): 1–22. https://doi.org/10.21608/auber.2018.133197.

Sun, B., Y. Kang, Q. Shi, M. Arowo, Y. Luo, G. Chu and H. Zou. 2019. Synthesis of ZSM-5 by Hydrothermal Method with Pre-mixing in a Stirred-tank Reactor. Canadian Journal of Chemical Engineering. 97(12): 3063–3073. https://doi.org/10.1002/cjce.23593.

Ayodeji, A. A., H. F. Kofi, O. J. Oladele, O. A. Esther, O. S. Fayomi and U. C. Chisom. 2017. Effect of Crystallisation Time on the Synthesis of Zeolite y from Elefun Kaolinite Clay. International Journal of Applied Engineering Research. 12(21): 10981–10988.

Jantarit, N., P. Tayraukham, N. Osakoo, K. Föttinger and Wittayakun. 2020. Formation of EMT/FAU Intergrowth and Nanosized SOD Zeolites from Synthesis Gel of Zeolite NaX Containing Ethanol. Material Research Express. 7(7): 1–10. https://doi.org/10.1002/cjce.23593.

Król, M., W. Mozgawa, W. Jastrzbski and K. Barczyk. 2012. Application of IR Spectra in the Studies of Zeolites from D4R and D6R Structural Groups. Microporous and Mesoporous Materials. 156: 181–188. https://doi.org/10.1016/j.micromeso.2012.02.040.

Yoo, Y. S., H. J. Ban, K. H. Cheon and J. L. Lee. 2009. The Effect of Aging on Synthesis of Zeolite at High Temperature. Materials Science Forum. 620–622, 225–228. https://doi.org/10.4028/www.scientific.net/MSF.620-622.225.

Published

2025-03-12

Issue

Section

Science and Engineering

How to Cite

THE EFFECT OF CRYSTALLIZATION AND AGING TIME IN ZEOLITE SYNTHESIS USING COAL FLY ASH AS SILICA AND ALUMINA SOURCE. (2025). Jurnal Teknologi (Sciences & Engineering), 87(3). https://doi.org/10.11113/jurnalteknologi.v87.22254