A REVIEW OF THE QUALITIES AND UTILIZATION OF WASTE MATERIALS IN WARM MIX ASPHALT CONCRETE

Authors

  • Yusuf Babangida Attahiru ᵃFaculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia ᵇbDepartment of Civil Engineering, Faculty of Engineering, Kebbi State University of Science and Technology, Aliero, 1144, Kebbi State, Nigeria
  • Azman Mohamed Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Norhidayah AH Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Raimi Mohd Ramli UMLAB Civil Engineering Laboratory Sdn Bhd, Taman Universiti, 81300 Skudai, Johor Darul Ta'zim, Johor, Malaysia
  • Abubakar Ibrahim Department of Civil Engineering, Faculty of Engineering, Kebbi State University of Science and Technology, Aliero, 1144, Kebbi State, Nigeria
  • Kabiru Dangoma Umar Department of Civil Engineering, Faculty of Engineering, Waziri Umaru Federal Polytechnic, Birnin Kebbi, 1034, Kebbi State, Nigeria
  • Bashir Yahaya Sanda ᵃFaculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia ᵇDepartment of Civil Engineering, Faculty of Engineering, Kebbi State University of Science and Technology, Aliero, 1144, Kebbi State, Nigeria
  • Jabir Allami Department of Civil Engineering, Faculty of Engineering, Kebbi State University of Science and Technology, Aliero, 1144, Kebbi State, Nigeria

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22346

Keywords:

Waste materials, asphalt mixtures, asphalt pavements, asphalt binders, WMA technologies, and additives

Abstract

The amount of unwanted waste produced in recent decades has quickly increased due to rapid population growth, technological advancements, and the widespread use of state-of-the-art products and services in the industry. Different researchers have carried out extensive studies on waste materials. Regretfully, most investigations focus only on the performance of HMA concrete that has been modified using one or two types of waste. Therefore, this study investigates an extensive review of the qualities and utilization of four types of wastes, viz., Coal Bottom Ash (CBA), Waste Cooking Oil (WCO), Waste Engine Oil (WEO), and Rice Husk Ash (RHA), as well as assessing their bibliometric analyses. The wastes that were being investigated showed a notable improvement in Warm Mix Asphalt (WMA) concrete. The WMA technology has successfully reduced the environmental issues of high production and compaction temperatures. The previous publications on CBA, WCO, WEO, and RHA identified 3,914 published documents between 2009 and 2023. Only 32 of these documents were published by Scopus. The academic disciplines of engineering, materials science, environmental sciences, and others have contributed 37%, 29%, 19%, and 15%, respectively, to Scopus publication. The United Kingdom made a significant contribution of 50% to Scopus publication compared to other countries. Furthermore, the findings also revealed that 89.4% (29 documents) were technical articles and only 10.6% (3 documents) were review articles. Further review of the rheological and microscopic properties of the four wastes is needed.

References

P. Kumar and S. Shukla. 2023. Utilization of Steel Slag Waste as a Construction Material: A Review. Materials Today Proceedings. Doi: 10.1016/j.matpr.2023.01.015.

Y. B. Attahiru et al. 2019. A Review on Green Economy and Development of Green Roads and Highways using Carbon Neutral Materials. Renewable and Sustainable Energy Reviews. 101:. 600–613. Doi: 10.1016/J.RSER.2018.11.036.

M. M. A. Aziz, M. T. Rahman, M. R. Hainin, and W. A. Bakar. 2015. An Overview on Alternative Binders for Flexible Pavement. Construction and Building Materials. 84: 315–319. Doi: 10.1016/j.conbuildmat.2015.03.068.

A. Sanna, M. Dri, M. R. Hall, and M. Maroto-Valer. 2012. Waste Materials for Carbon Capture and Storage by Mineralization (CCSM)–A UK Perspective. Applied Energy. 99: 545–554.

G. O. Bamigboye et al. 2021. Waste Materials in Highway Applications: An Overview on Generation and Utilization Implications on Sustainability. Journal of Cleaner Production. 283: 124581. Doi: 10.1016/j.jclepro.2020.124581.

B. Tansel. 2023. Thermal Properties of Municipal Solid Waste Components and Their Relative Significance for Heat Retention, Conduction, and Thermal Diffusion in Landfills. Journal of Environmental Management. 325: 116651. Doi 10.1016/j.jenvman.2022.116651.

N. Asim et al. 2021. Wastes from the Petroleum Industries as Sustainable Resource Materials in Construction Sectors: Opportunities, Limitations, and Directions. Journal of Cleaner Production. 284. Doi: 10.1016/j.jclepro.2020.125459.

A. Behnood. 2020. A Review of the Warm Mix Asphalt (WMA) Technologies: Effects on Thermo-mechanical and Rheological Properties. Journal of Cleaner Production. Doi: 10.1016/j.jclepro.2020.120817.

K. J. Kowalski et al. 2016. Eco-friendly Materials for a New Concept of Asphalt Pavement. Transportation Research Procedia. 14: 3582–3591. Doi: 10.1016/j.trpro.2016.05.426.

Transportation Research Board. 2012. Alternative Binders for Sustainable Asphalt Pavements. Paper from 91st Annual Meeting of the Transportation Research Board, January 22–26, Washington, D.C.

X. Zhang, F. Li, J. Wang, H. Zhao, and X. F. Yu. 2021. Strategy for Improving the Activity and Selectivity of CO2 Electroreduction on Flexible Carbon Materials for Carbon Neutral. Applied Energy. 298(April): 117196. Doi: 10.1016/j.apenergy.2021.117196.

U. O. F. M. Powder, F. O. R. Buildings, and I. N. Seaside. 2023. Modified with Graphite Carbon Particles on Concrete Construction. Jurnal Teknologi. 6: 37–45.

S. A. Tahami, M. Arabani, and A. Foroutan Mirhosseini. 2018. Usage of Two Biomass Ashes as Filler in Hot Mix Asphalt. Construction and Building Materials. 170: 547–556. Doi: 10.1016/j.conbuildmat.2018.03.102.

T. M. Rengarasu, M. Juzaafi, W. M. K. R. T. W. Bandara, and N. Jegatheesan. 2020. Suitability of Coal Bottom Ash and Carbonized Rice Husk in Hot Mix Asphalt. Asian Transport Studies. 6(April): 100013. Doi: 10.1016/j.eastsj.2020.100013.

Q. Chen, C. Wang, Z. Qiao, and T. Guo. 2020. Graphene/tourmaline Composites as a Filler of Hot Mix Asphalt Mixture : Preparation and Properties. Construction and Building Materials. 239: 117859. Doi: 10.1016/j.conbuildmat.2019.117859.

A. Dulaimi, H. Kamil, H. Jafer, and M. Sadique. 2020. An Evaluation of the Performance of Hot Mix Asphalt Containing Calcium Carbide Residue as a Filler. Construction and Building Materials. 261: 119918. Doi: 10.1016/j.conbuildmat.2020.119918.

Y. Xiao, S. Erkens, M. Li, T. Ma, and X. Liu. 2020. Sustainable Designed Pavement Materials. Materials (Basel). 13(7): 1–5. Doi: 10.3390/ma13071575.

N. Su, F. Xiao, J. Wang, L. Cong, and S. Amirkhanian. 2018. Productions and Applications of Bio-asphalts – A Review. Construction and Building Materials. 183: 578–591. Doi: 10.1016/j.conbuildmat.2018.06.118.

F. G. Praticò, M. Giunta, M. Mistretta, and T. M. Gulotta. 2020. Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads. Sustainability. 12(2). Doi: 10.3390/su12020704.

A. Gedik. 2021. An Exploration into the Utilization of Recycled Waste Glass as a Surrogate Powder to Crushed Stone Dust in Asphalt Pavement Construction. Construction and Building Materials. 300: 123980. Doi: 10.1016/j.conbuildmat.2021.123980.

P. K. Gautam, P. Kalla, A. S. Jethoo, R. Agrawal, and H. Singh. 2018. Sustainable Use of Waste in Flexible Pavement: A Review. Construction and Building Materials. 180: 239–253. Doi: 10.1016/j.conbuildmat.2018.04.067.

Y. Ma et al. 2021. The Utilization of Waste Plastics in Asphalt Pavements: A Review. Cleaner Materials. 2(November): 100031. Doi: 10.1016/j.clema.2021.100031.

J. E. Edeh, M. Joel, and A. Abubakar. 2019. Sugarcane Bagasse Ash Stabilization of Reclaimed Asphalt Pavement as Highway Material. International Journal of Pavement Engineering. 20(12): 1385–1391. Doi: 10.1080/10298436.2018.1429609.

A. Jamshidi and G. White. 2020. Evaluation of Performance and Challenges of the Use of Waste Materials in Pavement Construction: A Critical Review. Applied Sciences. 10(1). Doi: 10.3390/app10010226.

J. Wang et al. 2023. Performance Evaluation of Aged Asphalt Rejuvenated with Various Bio-Oils based on Rheological Property Index. Journal of Cleaner Production. 385(December): 135593. Doi 10.1016/j.jclepro.2022.135593.

N. Sathiparan, A. Anburuvel, and V. V. Selvam. 2023. Utilization of Agro-waste Groundnut Shell and Its Derivatives in Sustainable Construction and Building Materials – A Review. Journal of Building Engineering. 66(October): 105866. Doi: 10.1016/j.jobe.2023.105866.

Y. Babangida Attahiru, A. Mohamed, A. Eltwati, A. A. Burga, A. Ibrahim, and A. M. Nabade. 2023. Effect of Waste Cooking Oil on Warm Mix Asphalt Block Pavement – A Comprehensive Review. Physics and Chemistry of the Earth. 129(November): 103310. Doi: 10.1016/j.pce.2022.103310.

A. M. Al-Sabaeei, M. B. Napiah, M. H. Sutanto, W. S. Alaloul, and A. Usman. 2020. A Systematic Review of Bio-asphalt for Flexible Pavement Applications: Coherent Taxonomy, Motivations, Challenges and Future Directions. Journal of Cleaner Production. 249. Doi: 10.1016/j.jclepro.2019.119357.

P. O. Awoyera and A. Adesina. 2020. Case Studies in Construction Materials Plastic Wastes to Construction Products : Status, Limitations and Future Perspective. Case Studies in Construction Materials. 12: e00330. Doi: 10.1016/j.cscm.2020.e00330.

Z. Yuechao, C. Meizhu, W. Shaopeng, and J. Qi. 2022. Rheological Properties and Microscopic Characteristics of Rejuvenated Asphalt using Different Components from Waste Cooking Oil. Journal of Cleaner Production. 370(July): 133556. Doi: 10.1016/j.jclepro.2022.133556.

M. Y. Reddy and M. Harihanandh. 2023. Materials Today: Proceedings Experimental Studies on Strength and Durability of Alkali-activated Slag and Coal Bottom Ash based Geopolymer Concrete. Materials Today Proceedings. Doi: 10.1016/j.matpr.2023.03.644.

P. Chindasiriphan, B. Meenyut, and S. Orasutthikul. 2022. Influences of High-volume Coal Bottom Ash as Cement and Fine Aggregate Replacements on Strength and Heat Evolution of Eco-friendly High-strength Concrete. Journal of Building Engineering. 65(December): 105791. Doi: 10.1016/j.jobe.2022.105791.

A. Fernández-Braña, G. Feijoo, and C. Dias-Ferreira. 2020. Turning Waste Management into a Carbon Neutral Activity: Practical Demonstration in a Medium-sized European City. Science of the Total Environment. 728: 138843. Doi: 10.1016/j.scitotenv.2020.138843.

A. Padilla-Rivera, B. Amor, and P. Blanchet. 2018. Evaluating the Link between Low Carbon Reduction Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-frame Residential Building in Quebec, Canada. Sustainability. 10(8): 1–20. Doi: 10.3390/su10082715.

N. C. Onat and M. Kucukvar. 2020. Carbon Footprint of the Construction Industry: A Global Review and Supply Chain Analysis. Renewable and Sustainable Energy Reviews. 124(January): 109783. Doi: 10.1016/j.rser.2020.109783.

I. Karlsson, J. Rootzén, and F. Johnsson. 2020. Reaching Net-zero carbon Emissions in Construction Supply Chains – Analysis of a Swedish Road Construction Project. Renewable and Sustainable Energy Reviews. 120. Doi: 10.1016/j.rser.2019.109651.

M. Espinoza et al. 2019. Carbon Footprint Estimation in Road Construction: La Abundancia-Florencia Case Study. Sustainability. 11(8): 1–13. Doi: 10.3390/su11082276.

T. Ishihara and P. Sofronis. 2018. Focus on Carbon-neutral Energy Science and Technology. Science and Technology of Advanced Materials. 19(1): 484–485. Doi: 10.1080/14686996.2018.1476219.

D. E. G. Bizarro, Z. Steinmann, I. Nieuwenhuijse, E. Keijzer, and M. Hauck. 2021. Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-future Reduction Potential. Sustainability. 13(3): 1–20. Doi: 10.3390/su13031382.

F. F. Udoeyo, H. Inyang, T. D. Young, and E. . Oparadu. 2015. Potential of Wood Waste Ash as an Additive in Fibre Reinforced Concrete. Journal of Materials in Civil Engineering. V4(12): 605–611. Doi: 10.17577/ijertv4is120443.

Z. Ali and N. Abdul. 2021. Case Studies in Construction Materials Moisture Susceptibility and Environmental Impact of Warm Mix Asphalt Containing Bottom Ash. Case Studies in Construction Materials. 15(June): e00636. Doi 10.1016/j.cscm.2021.e00636.

W. Ahmad, A. Ahmad, K. Adam, and F. Aslam. 2021. Case Studies in Construction Materials Short Communication A Scientometric Review of Waste Material Utilization in Concrete for Sustainable Construction. Case Studies in Construction Materials. 15(September): e00683. Doi 10.1016/j.cscm.2021.e00683.

N. Lippiatt, T. C. Ling, and S. Y. Pan. 2020. Towards Carbon-neutral Construction Materials: Carbonation of Cement-based Materials and the Future Perspective. Journal of Building Engineering. 28: 101062. Doi: 10.1016/j.jobe.2019.101062.

A. Mohajerani, J. Bakaric, and T. Jeffrey-Bailey. 2017. The Urban Heat Island Effect, Its Causes, and Mitigation, Concerning the Thermal Properties of Asphalt Concrete. Journal of Environmental Management. 197: 522–538. Doi: 10.1016/j.jenvman.2017.03.095.

A. Murana and L. Sani. 2015. Partial Replacement of Cement with Bagasse Ash in Hot Mix Asphalt. Niger. Jurnal Technology. 34(4): 699. Doi: 10.4314/njt.v34i4.5.

A. Ahmad, W. Ahmad, F. Aslam, and P. Joyklad. 2022. Case Studies in Construction Materials Compressive Strength Prediction of Fly Ash-based Geopolymer Concrete via Advanced Machine Learning Techniques. Case Studies in Construction Materials. 16(November): e00840. Doi 10.1016/j.cscm.2021.e00840.

H. Y. Ahmed, A. M. Othman, and A. A. Mahmoud. 2006. Effect of Using Waste Cement Dust as Mineral Filler on the Mechanical Properties of Hot Mix Asphalt. Assiut Universit Bulletin for Environmental Researches. 9(1): 51–60.

The Government of the Republic of Korea. 2020. 2050 Carbon Neutral Strategy of the Republic of Korea: Towards a sustainable and green society. Republic of Korea. December: 1–131.

J. K. Appiah, V. N. Berko-Boateng, and T. A. Tagbor. 2017. Use of Waste Plastic Materials for Road Construction in Ghana. Case Studies in Construction Materials. 6: 1–7. Doi: 10.1016/j.cscm.2016.11.001.

C. ZOU et al. 2021. The Role of New Energy in Carbon Neutral. Petroleum Exploration and Development. 48(2): 480–491. Doi: 10.1016/S1876-3804(21)60039-3.

U. C. Kalluri, X. Yang, and S. D. Wullschleger. 2020. Plant Biosystems Design for a Carbon-Neutral Bioeconomy. BioDesign Research. 2020: 1–5. Doi: 10.34133/2020/7914051.

S. W. M. Supit and Priyono. 2023. Utilization of Modified Plastic Waste on the Porous Concrete Block Containing Fine Aggregate. Jurnal Teknologi. 85(4): 143–151. Doi: 10.11113/jurnalteknologi.v85.19219.

G. H. Shafabakhsh and Y. Sajed. 2014. Investigation of the Dynamic Behavior of Hot Mix Asphalt Containing Waste Materials; Case Study: Glass Cullet. Case Studies in Construction Materials. 1: 96–103. Doi: 10.1016/j.cscm.2014.05.002.

S. Heydari, A. Hajimohammadi, N. Haji, S. Javadi, and N. Khalili. 2021. The Use of Plastic Waste in Asphalt : A Critical Review on Asphalt Mix Design and Marshall Properties. Construction and Building Materials. 309(June): 125185. Doi: 10.1016/j.conbuildmat.2021.125185.

S. Wu and L. Montalvo. 2021. Repurposing Waste Plastics into Cleaner Asphalt Pavement Materials : A Critical Literature Review. Journal of Cleaner Production. 280: 124355. Doi: 10.1016/j.jclepro.2020.124355.

H. Zhou et al. 2022. Science of the Total Environment Towards Sustainable Coal Industry: Turning Coal Bottom Ash into Wealth. Science of the Total Environment. 804: 149985. Doi: 10.1016/j.scitotenv.2021.149985.

M. Singh and R. Siddique. 2016. Effect of Coal Bottom Ash as Partial Replacement of Sand on Workability and Strength Properties of Concrete. Journal of Cleaner Production. 112: 620–630. Doi: 10.1016/j.jclepro.2015.08.001.

K. Shi-Cong and P. Chi-sun. 2009. Properties of Concrete Prepared with Crushed Fine Stone, Furnace Bottom Ash and Fine Recycled Aggregate as Fine Aggregates. Construction and Building Materials. 23(8): 2877–2886. Doi: 10.1016/j.conbuildmat.2009.02.009.

M. Rafieizonooz, J. Mirza, M. Razman, M. Warid, and E. Khankhaje. 2016. Investigation of Coal bottom Ash and Fly Ash in Concrete as a Replacement for Sand and Cement. Construction and Building Materials. 116: 15–24. Doi: 10.1016/j.conbuildmat.2016.04.080.

Y. B. Ahn, J. G. Jang, and H. K. Lee. 2016. Mechanical Properties of lightweight Concrete Made with Coal Ashes after Exposure to Elevated Temperatures. Cement and Concrete Composites. 72: 27–38. Doi: 10.1016/j.cemconcomp.2016.05.028.

S. K. Kirthika, M. Surya, and S. K. Singh. 2019. Effect of Clay in Alternative Fine Aggregates on the Performance of Concrete. Construction and Building Materials. 228: 116811. Doi: 10.1016/j.conbuildmat.2019.116811.

A. H. Ibrahim et al. 2019. Influence of Coal Bottom Ash on Properties of Portland Cement Mortar. 2: 69–77.

N. Ankur and N. Singh. 2021. Performance of Cement Mortars and Concretes Containing Coal Bottom Ash : A Comprehensive Review. Renewable and Sustainable Energy Reviews. 149(January): 111361. Doi: 10.1016/j.rser.2021.111361.

H. F. Hassan. 2010. Characterisation of asphalt Mixes Containing MSW Ash using the Dynamic Modulus jE*j Test. 11(6): 575–582. Doi: 10.1080/10298436.2010.501865.

G. L. Conner. 2017. Laboratory Evaluation of Bottom Ash Asphalt Mixes (MPC-04-159). February.

B. Yoo, D. Park, and H. Viet. 2016. Evaluation of Asphalt Mixture Containing Coal Ash. Transportation Research Procedia. 14(1997): 797–803. Doi: 10.1016/j.trpro.2016.05.027.

H. K. Kim and H. K. Lee. 2015. Coal Bottom Ash in Field of Civil Engineering : A Review of Advanced Applications and Environmental Considerations. KSCE J Civ Eng. 19: 1802–1818. Doi: 10.1007/s12205-015-0282-7.

S. A. Mohammed et al. 2021. A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry. Sustainability. 13(14).

S. K. Goudar, K. N. Shivaprasad, and B. B. Das. 2019. Mechanical Properties of Fiber-Reinforced Concrete Using Coal-Bottom Ash as Replacement of Fine Aggregate. Springer Singapore. Doi: 10.1007/978-981-13-3317-0.

D. El, M. A. Fe, and M. J. Fu. 2021. Biomas Bottom Ash Waste and by-products of the Acetylene in Industry as Raw Materials for Unfired Bricks. Journal of Building Engineering. 38(December): 1–10. Doi: 10.1016/j.jobe.2021.102191.

M. I. Al, R. Embong, K. Muthusamy, N. Ismail, and I. I. Obianyo. 2022. Recycled Coal Bottom Ash as Sustainable materials for cement replacement in cementitious Composites : A Review. Construction and Building Materials. 338(March): 127624. Doi 10.1016/j.conbuildmat.2022.127624.

M. Singh and R. Siddique. 2013. Resources, Conservation and Recycling Effect of Coal Bottom Ash as Partial Replacement of Sand on Properties of Concrete. Resources, Conservation, and Recycling. 72: 20–32. Doi: 10.1016/j.resconrec.2012.12.006.

K. Muthusamy et al. 2020. Coal Bottom Ash as Sand Replacement in Concrete : A Review. Construction and Building Materials. 236: 117507. Doi: 10.1016/j.conbuildmat.2019.117507.

A. Eltwati, R. P. Jaya, A. Mohamed, E. Jusli, and Z. Al-saffar. 2023. Effect of Warm Mix Asphalt (WMA) Antistripping Agent on Performance of Waste Engine Oil-Rejuvenated Asphalt Binders and Mixtures. Sustainability. 15: 3807.

S. Kumar Mahto and S. Sinha. 2023. Influence of Rice Husk Ash on Moisture Susceptibility of Warm Mix Asphalt using Chemical Based Additive. Materials Today Proceedings. Doi: 10.1016/j.matpr.2023.06.118.

B. Fayissa, O. Gudina, and B. Yigezu. 2020. Application of Sawdust Ash as Filler Material in Asphaltic Concrete Production. Civil and Environmental Engineering. 16(2): 351–359. Doi: 10.2478/cee-2020-0035.

O. O. Daramola et al. 2023. Optimization of the Mechanical Properties of Polyester/coconut Shell Ash (CSA) Composite for Light-weight Engineering Applications. Scientific Reports. 13(1): 1–16. Doi: 10.1038/s41598-022-26632-x.

W. Li et al. 2023. Science of the Total Environment Review of Thermal Treatments for the Degradation of Dioxins in Municipal Solid Waste Incineration Fly Ash: Proposing a Suitable Method for Large-scale Processing. Science and Total Environment. 875(March). Doi: 10.1016/j.scitotenv.2023.162565.

V. K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, and A. Nayak. 2011. A Comparative Investigation on Adsorption Performances of Mesoporous Activated Carbon Prepared from Waste Rubber Tire and Activated Carbon for a Hazardous Azo Dye—Acid Blue 113. Journal of Hazardous Materials. 186(1): 891–901.

A. S. Eltwati, M. Enieb, and Z. H. Al-saffar. 2021. Effect of Glass Fibers and Waste Engine Oil on the Properties of RAP Asphalt Effect of Glass Fibers and Waste Engine Oil on the Properties of RAP Asphalt Concretes. December. Doi 10.1080/10298436.2021.2001815.

M. V. S. Reddy, K. Sasi, K. Ashalatha, and M. Madhuri. 2017. Groundnut Shell Ash as Partial Replacement of Cement in Concrete. Research Journal of Science and Technology. 9(3): 313. Doi: 10.5958/2349-2988.2017.00056.0.

J. Mar, J. Su, F. J. Iglesias-godino, and F. A. Corpas-iglesias. 2020. Development of Porous Asphalt with Bitumen Emulsion, Electric Arc Furnace Slag and Cellulose Fibers for Medium Traffic Roads. Minerals. 10(10): 872. https://doi.org/10.3390/min10100872.

D. Rigotti and A. Dorigato. 2022. Novel Uses of Recycled Rubber in Civil Applications. Advanced Industrial and Engineering Polymer Research. 5(4): 214–233. Doi: 10.1016/j.aiepr.2022.08.005.

C. Ban, J. Jia, K. Le, P. Kevin, and R. Siddique. 2023. Influence of Milling Parameters on the Properties of Ground Coal Bottom Ash and Its Blended Cement. Construction and Building Materials. 363(November): 129745. Doi 10.1016/j.conbuildmat.2022.129745.

N. C. Consoli, K. S. Heineck, M. R. Coop, A. V. Da Fonseca, and C. Ferreira. 2007. Coal Bottom Ash as a Geomaterial: Influence of Particle Morphology on the Behavior of Granular Materials. Soils and Foundations. 47(2): 361–373. Doi: 10.3208/sandf.47.361.

S. Sadat et al. 2017. Microstructural Characterization and Mechanical Properties of Bottom Ash Mortar. Journal of Cleaner Production. Doi: 10.1016/j.jclepro.2017.09.191.

S. Ju, S. Bae, J. Jung, S. Park, and S. Pyo. 2023. Use of Coal Bottom Ash for the Production of Sodium Silicate Solution in Metakaolin-based Geopolymers Concerning Environmental Load Reduction. Construction and Building Materials. 391(January): 131846. Doi 10.1016/j.conbuildmat.2023.131846.

N. Singh and A. Bhardwaj. 2020. “Reviewing the Role of Coal Bottom Ash as an Alterntive of Cement. Construction and Building Materials. 233: 117276. Doi: 10.1016/j.conbuildmat.2019.117276.

M. Rafieizonooz, E. Khankhaje, and S. Rezania. 2024. Assessment of Environmental and Chemical Properties of Coal Ashes Including Fly Ash and Bottom Ash, and Coal Ash Concrete. Journal of Building Engineering. 49(November): 104040. Doi: 10.1016/j.jobe.2022.104040.

T. Xie and T. Ozbakkaloglu. 2015. Behavior of Low-calcium Fly and Bottom Ash-based Geopolymer Concrete Cured at Ambient Temperature. Ceramic International. 41(4): 5945–5958. Doi: 10.1016/j.ceramint.2015.01.031.

R. A. Antunes Boca Santa, C. Soares, and H. G. Riella. 2017. Geopolymers Obtained from Bottom Ash as a Source of Aluminosilicate Cured at Room Temperature. Construction and Building Materials. 157: 459–466. Doi: 10.1016/j.conbuildmat.2017.09.111.

Y. Dong, M. Zhou, Y. Xiang, S. Wan, H. Li, and H. Hou. 2019. Barrier Effect of Coal Bottom Ash-based Geopolymers on Soil Contaminated by Heavy Metals. RSC Advances. 9(49): 28695–28703. Doi: 10.1039/c9ra05542h.

E. Aydin. 2016. Novel Coal Bottom Ash Waste Composites for Sustainable Construction. Construction and Building Materials. 124: 582–588. Doi: 10.1016/j.conbuildmat.2016.07.142.

Y. Luna, C. G. Arenas, A. Cornejo, C. Leiva, L. F. Vilches, and C. Ferna. 2014. Recycling by-products from Coal-fired Power Stations into Different Construction Materials. 387–397. Doi: 10.1007/s40095-014-0120-6.

B. Zhang and C. S. Poon. 2015. Use of Furnace Bottom Ash for Producing Lightweight Aggregate Concrete with Thermal Insulation Properties. Journal of Cleaner Production. 1–7. Doi: 10.1016/j.jclepro.2015.03.007.

Y. Aggarwal and R. Siddique. 2014. Microstructure and Properties of Concrete using Bottom Ash and Waste Foundry Sand as Partial Replacement of Fine Aggregates. Construction and Building Materials. 54: 210–223. Doi: 10.1016/j.conbuildmat.2013.12.051.

R. Siddique and Kunal. 2015. Design and Development of Self-compacting Concrete Made with Coal Bottom Ash. Journal of Sustainable Cement-Based Materials. 4(3): 225–237. Doi: 10.1080/21650373.2015.1004138.

A. S. Cadersa and I. Auckburall. 2014. Use of Unprocessed Coal Bottom Ash as Partial Fine Aggregate Replacement in Concrete. University of Mauritius Research Journal. 20: 62–84.

E. Baite, A. Messan, K. Hannawi, F. Tsobnang, and W. Prince. 2016. Physical and Transfer Properties of Mortar Containing Coal Bottom Ash Aggregates from Tefereyre (Niger). Construction and Building Materials. 125: 919–926. Doi: 10.1016/j.conbuildmat.2016.08.117.

H. K. Kim, J. G. Jang, Y. C. Choi, and H. K. Lee. 2014. Improved Chloride Resistance of High-strength Concrete Amended with Coal Bottom Ash for Internal Curing. Construction and Building Materials. 71: 334–343. Doi: 10.1016/j.conbuildmat.2014.08.069.

E. Menéndez, A. M. bbbÁlvaro, M. T. Hernández, and J. L. Parra. 2014. New Methodology for Assessing the Environmental Burden of Cement Mortars with Partial Replacement of Coal Bottom Ash and Fly Ash. Journal of Environmental Management. 133: 275–283. Doi 10.1016/j.jenvman.2013.12.009.

D. M. S. P. Dassanayake and S. M. A. Nanayakkara, “Development of geopolymer with coal fired boiler ash,” MERCon 2018 - 4th Int. Multidiscip. Moratuwa Engineering Research Conference, pp. 356–361, 2018, doi: 10.1109/MERCon.2018.8421910.

P. Onprom, K. Chaimoon, and R. Cheerarot. 2015. Influence of Bottom Ash Replacements as Fine Aggregate on the Property of Cellular Concrete with Various Foam Contents. Advances in Materials Science and Engineering. 381704: 11.

I. B. Topçu, M. U. Toprak, and T. Uygunoǧlu. 2014. Durability and Microstructure Characteristics of Alkali-activated Coal Bottom Ash Geopolymer Cement. Journal of Cleaner Production. 81: 211–217. Doi: 10.1016/j.jclepro.2014.06.037.

I. Conference. 2015. International Conference on Transportation and Development. 289–298. Available: http://www.asce-ictd.org/

S. Oruji, N. A. Brake, L. Nalluri, and R. K. Guduru. 2017. Strength Activity and Microstructure of Blended Ultra-fine Coal Bottom Ash-cement Mortar. Construction and Building Materials. 153: 317–326. Doi: 10.1016/j.conbuildmat.2017.07.088.

R. Ghosh, S. K. Gupta, A. Kumar, and S. Kumar. 2019. Durability and Mechanical Behavior of Fly Ash-GGBFS Geopolymer Concrete Utilizing Bottom Ash as Fine Aggregate. Transaction of the Indian Ceramic Society. 78(1): 24–33. Doi: 10.1080/0371750X.2019.1581092.

B. Ash. 2019. Properties of Concrete Incorporating Coal Fly Ash and Coal. Journal of the Institution of Engineers (India) Series A. Doi: 10.1007/s40030-019-00374-y.

N. Singh, M. Mithulraj, and S. Arya. 2019. Resources, Conservation & Recycling Utilization of Coal Bottom Ash in recycled Concrete Aggregates based Self-compacting Concrete Blended with Metakaolin. Resources, Conservation and Recycling. 144(January): 240–251. Doi 10.1016/j.resconrec.2019.01.044.

K. Klarens, M. Indranata, L. Al Jamali, and D. Hardjito. 2017. The Use of Bottom Ash for Replacing Fine Aggregate in Concrete Paving Blocks. MATEC Conference. 01005. Doi: 10.1051/matecconf/201713801005.

M. Soofinajafi, P. Shafigh, F. W. Akashah, and H. Bin Mahmud. 2016. Mechanical Properties of High Strength Concrete Containing Coal Bottom Ash and Oil-Palm Boiler Clinker as Fine Aggregates. MATEC Web of Conferences. 66. Doi: 10.1051/matecconf/20166600034.

M. Rafieizonooz, J. Mirza, M. R. Salim, M. W. Hussin, and E. Khankhaje. 2016. Investigation of Coal Bottom Ash and Fly Ash in Concrete as a Replacement for Sand and Cement. Construction and Building Materials. 116: 15–24. Doi: 10.1016/j.conbuildmat.2016.04.080.

M. Rafieizonooz et al. 2017. Toxicity Characteristics and Durability of Concrete Containing Coal Ash as a Substitute for Cement and River Sand. Construction and Building Materials. 143: 234–246. Doi: 10.1016/j.conbuildmat.2017.03.151.

A. Kusbiantoro, A. Hanani, and R. Embong. 2019. Pozzolanic Reactivity of Coal Bottom Ash after Chemically Pre-treated with Sulfuric Acid. Materials Science Forum. 947: 212–216. Doi: 10.4028/www.scientific.net/MSF.947.212.

H. Jun Ng, M. M. Al Bakri Abdullah, S. J. Tan, A. V. Sandu, and K. Hussin. 2018. Characterisation and Understanding of Portland Cement Mortar with Different Sizes of Bottom Ash. Advance in Cement Research. 30(2): 66–74. Doi: 10.1680/jadcr.17.00076.

S. K. Ong, K. H. Mo, U. J. Alengaram, M. Z. Jumaat, and T. C. Ling. 2018. Valorization of Wastes from Power Plant, Steel-Making and Palm Oil Industries as Partial Sand Substitute in Concrete. Waste and Biomass Valorization. 9(9): 1645–1654. Doi: 10.1007/s12649-017-9937-6.

J. G. Jang, H. J. Kim, H. K. Kim, and H. K. Lee. 2016. Resistance of Coal Bottom Ash Mortar against the Coupled Deterioration of Carbonation and Chloride Penetration. JMADE. 93: 160–167. Doi: 10.1016/j.matdes.2015.12.074.

S. Hanjitsuwan, T. Phoo-ngernkham, and N. Damrongwiriyanupap. 2017. Comparative Study using Portland Cement and Calcium Carbide Residue as a Promoter in Bottom Ash Geopolymer Mortar. Construction and Building Materials. 133: 128–134. Doi: 10.1016/j.conbuildmat.2016.12.046.

P. Torkittikul, T. Nochaiya, W. Wongkeo, and A. Chaipanich. 2017. Utilization of Coal Bottom Ash to Improve the Thermal Insulation of Construction Material. Journal of Material Cycles and Waste Management. 19(1): 305–317. Doi: 10.1007/s10163-015-0419-2.

N. H. Thang, N. N. Hoa, P. V. T. H. Quyen, N. N. K. Tuyen, T. V. T. Anh, and P. T. Kien. 2018. Engineering Properties of Lightweight Geopolymer Synthesized from Coal Bottom Ash and Rice Husk Ash. AIP Conf. Proc. 1954(1). Doi: 10.1063/1.5033409.

H. T. Nguyen, T. K. Pham, and M. A. B. Promentilla. 2018. Development of Geopolymer-based Materials from Coal Bottom Ash and Rice Husk Ash with Sodium Silicate Solutions. Lecture Notes on Civil Engineering. 8: 402–410. Doi: 10.1007/978-981-10-6713-6_40.

E. Menéndez, C. Argiz, and M. A. Sanjuán. 2018. External Sulphate Attack-Field Aspects and Lab Tests. RILEM Final Workshop of TC 251-SRT. 21(September).

S. Donatello, O. Maltseva, A. Fernandez-Jimenez, and A. Palomo. 2014. The Early Age Hydration Reactions of a Hybrid Cement Containing a Very High Content of Coal Bottom Ash. Journal of the American Ceramic Society. 97(3): 929–937. Doi: 10.1111/jace.12751.

S. Pyo and H. Kim. 2017. Fresh and Hardened Properties of Ultra-high Performance Concrete Incorporating Coal Bottom Ash and Slag Powder. Construction and Building Materials. 131: 459–466. Doi: 10.1016/j.conbuildmat.2016.10.109.

A. Miguel. 2019. Coal Bottom Ash Natural Radioactivity in Building Materials. Journal of Radioanalytical and Nuclear Chemistry. 319(1):1–9. Doi 10.1007/s10967-018-6251-0.

C. Argiz, M. Á. Sanjuán, and E. Menéndez. 2017. Coal Bottom Ash for Portland Cement Production. Advances in Materials Science and Engineering. 2017. Doi: 10.1155/2017/6068286.

M. Singh and R. Siddique. 2015. Properties of Concrete Containing High Volumes of Coal Bottom Ash as Fine Aggregate. Journal of Cleaner Production. 91: 269–278. Doi: 10.1016/j.jclepro.2014.12.026.

H. Kim. 2015. Utilization of Sieved and Ground Coal Bottom Ash Powders as a Coarse Binder in High-strength Mortar to Improve Workability. Construction and Building Materials. 91: 57–64. Doi: 10.1016/j.conbuildmat.2015.05.017.

N. Ernida et al. 2014. The Effect of Bottom Ash on Fresh Characteristic, Compressive Strength and Water Absorption of Self-compacting Concrete. Applied Mechanics and Materials. 1660: 145–151. Doi: 10.4028/www.scientific.net/AMM.660.145.

C. Argiz, E. Menéndez, I. De Ciencias, D. Construcción, and E. Torroja. 2014. Recent Advances in Coal Bottom Ash Use as a New Common Portland Cement Constituent. Structural Engineering International. 24(4): 503–508. Doi: 10.2749/101686613X13768348400518.

H. Hansika. 2019. Investigation on Properties of Cellular Lightweight Concrete Blocks with Bottom Ash. 2019 Moratuwa Engineering Research Conference. 424–429.

M. Wu, C. Lin, W. Huang, and J. Chen. 2016. Characteristics of Pervious Concrete using Incineration Bottom Ash in Place of Sandstone Graded Material. Construction and Building Materials. 111: 618–624. Doi: 10.1016/j.conbuildmat.2016.02.146.

M. Thomas. 2011. Cement and Concrete Research the Effect of Supplementary Cementing Materials on Alkali-silica Reaction : A Review. Cement and Concrete Research. 41(12): 1224–1231. Doi: 10.1016/j.cemconres.2010.11.003.

A. Ghosh, A. Ghosh, and S. Neogi. 2021. Evaluation of Physical and Thermal Properties of Coal Combustion Residue Blended Concrete for Energy Efficient Building Application in India. Advances in Building Energy Research. 15(3): 315–336. Doi: 10.1080/17512549.2018.1557076.

S. A. Mangi, M. Haziman, W. Ibrahim, and N. Jamaluddin. 2019. Effects of Grinding Process on the Properties of the Coal Bottom Ash and Cement Paste. J. Eng. Technol. Sci. 51(1): 1–13. D.oi: 10.5614/j.eng.technol.sci.2019.51.1.1.

S. A. Mangi et al. 2019. Coal Bottom Ash as a Sustainable Supplementary Cementitious Material for the Concrete Exposed to Seawater. American Institute of Physics Conference Proceedings. 2119(July): Doi: 10.1063/1.5115361.

S. A. Mangi, M. H. W. Ibrahim, N. Jamaluddin, M. F. Arshad, and S. W. Mudjanarko. 2019. Recycling of Coal Ash in Concrete as a Partial Cementitious Resource. Resources. 8(2): 7–9. Doi: 10.3390/resources8020099.

S. A. Mangi, M. H. Wan Ibrahim, N. Jamaluddin, M. F. Arshad, and R. Putra Jaya. 2016. Short-term Effects of Sulphate and Chloride on the Concrete Containing Coal Bottom Ash as Supplementary Cementitious Material. Engineering Science and Technology, an International Journal. 22(2): 515–522. Doi: 10.1016/j.jestch.2018.09.001.

M. Á. Sanjuán, B. Quintana, and C. Argiz. 2019. Coal Bottom Ash Natural Radioactivity in Building Materials. Journal of Radioanalytical and Nuclear Chemistry. 319(1): 91–99. Doi: 10.1007/s10967-018-6251-0.

N. Singh, S. Arya, and M. Mithul Raj. 2019. Assessing the Performance of Self-Compacting Concrete Made with Recycled Concrete Aggregates and Coal Bottom Ash Using Ultrasonic Pulse Velocity, Springer Singapore. 32. Doi: 10.1007/978-981-13-7017-5_19.

J. Ma, G. Sun, D. Sun, Y. Zhang, A. Cannone, and T. Lu. 2020. Rubber Asphalt Modified with Waste Cooking Oil Residue: Optimized Preparation, Rheological Property, Storage Stability and Aging Characteristic. Construction and Building Materials. 258: 120372. Doi: 10.1016/j.conbuildmat.2020.120372.

A. M. YEl-shorbag, S. M. El-badawy, and A. R. Gabr. 2019. Investigation of Waste Oils as Rejuvenators of Aged Bitumen for Sustainable Pavement. Construction and Building Materials. 220: 228–237. Doi 10.1016/j.conbuildmat.2019.05.180.

M. Zargar, E. Ahmadinia, H. Asli, and M. R. Karim. 2012. Investigation of the Possibility of using Waste Cooking Oil as a Rejuvenating Agent for Aged Bitumen. Journal of Hazardous Materials. 233-234: 254–258. Doi: 10.1016/j.jhazmat.2012.06.021.

S. Shiung, R. Keey, A. Jusoh, C. Tung, F. Nasir, and H. A. Chase. 2016. Progress in Waste Oil to Sustainable Energy, with Emphasis on Pyrolysis Techniques. Renewable and Sustainable Energy Reviews. 53: 741–753. Doi: 10.1016/j.rser.2015.09.005.

M. Carlini, S. Castellucci, and S. Cocchi. 2014. A Pilot-scale Study of Waste Vegetable Oil Transesterification with Alkaline and Acidic Catalysts. Energy Procedia. 45: 198–206. Doi: 10.1016/j.egypro.2014.01.022.

W. N. A. W. Azahar et al. 2016. The Potential of Waste Cooking Oil as Bio-asphalt for Alternative Binder – An Overview. Jurnal Teknologi. 78(4): 111–116. Doi: 10.11113/jt.v78.8007.

H. Asli, E. Ahmadinia, M. Zargar, and M. R. Karim. 2012. Investigation on Physical Properties of Waste Cooking Oil – Rejuvenated Bitumen Binder. Construction and Building Materials. 37: 398–405. Doi: 10.1016/j.conbuildmat.2012.07.042.

S. H. Chang. 2015. Characterization of Waste Cooking Oil as a Potential Green Solvent for Liquid-Liquid Extraction Potential Green Solvent for Liquid-Liquid Extraction. International Conference on Advances in Civil and Environmental Engineering 2015. 19–28.

A. B. Chhetri, K. C. Watts, and M. R. Islam. 2008. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies. 1: 3–18. Doi: 10.3390/en1010003.

R. Foroutan, H. Esmaeili, S. M. Mousavi, S. A. Hashemi, and G. Yeganeh. 2019. The Physical Properties of Biodiesel-Diesel Fuel Produced via Transesterification Process from Different Oil Sources. Physical Chemistry Research. 7(2): 415–424. Doi: 10.22036/pcr.2019.173224.1600.

A. Sharma, P. Kodgire, and S. S. Kachhwaha. 2020. Investigation of Ultrasound-assisted KOH and CaO Catalyzed Transesterification for Biodiesel Production from Waste Cotton-seed Cooking Oil: Process Optimization and Conversion Rate Evaluation. Journal of Cleaner Production. 259. Doi: 10.1016/j.jclepro.2020.120982.

Z. Sun, J. Yi, Y. Huang, D. Feng, and C. Guo. 2016. Properties of Asphalt Binder Modified by Bio-oil Derived from Waste Cooking Oil. Construction and Building Materials. 102: 496–504. Doi: 10.1016/j.conbuildmat.2015.10.173.

C. Wang, L. Xue, W. Xie, Z. You, and X. Yang. 2018. Laboratory Investigation on Chemical and Rheological Properties of Bio-asphalt Binders Incorporating Waste Cooking Oil. Construction and Building Materials. 167: 348–358. Doi: 10.1016/j.conbuildmat.2018.02.038.

S. Hashmi and A. Jabary. 2020. Introduction of a Sustainable Alternative for Bitumen. Master Thesis-30 ECTS, Faculty of Health, Science and Technology, Karlstads University.

Md Maniruzzaman A. Aziz, Md Tareq Rahman, Mohd. Rosli Hainin and Wan Azelee Wan Abu Bakar. 2016. Alternative Binders for Flexible Pavement. 11(20): October 2016.

L. Rocha-Meneses, A. Hari, A. Inayat, and L. A. Yousef. 2023. Recent Advances on Biodiesel Production from Waste Cooking Oil (WCO): A Review of Reactors, Catalysts, and Optimization Techniques Impacting the Production. Fuel. 348(June): 128514. Doi 10.1016/j. Fuel.2023.128514.

A. A. Mamun and H. I. A. Wahhab. 2018. Comparative Laboratory Evaluation of Waste Cooking Oil Rejuvenated Asphalt Concrete Mixtures for High Contents of Reclaimed Asphalt Pavement. International Journal of Pavement Engineering. 21(11): 1297–1308. Doi: 10.1080/10298436.2018.1539486.

W. Nur, A. Wan, and M. Bujang. 2016. Bio-asphalt for Alternative Binder-An Overview. Jurnal Teknologi. 78(4): 111–116. Doi: 10.11113/jt.v78.8007.

C. O. A. Study et al. 2016. Waste Cooking Oil as a Source for Renewable Fuel in Romania Waste Cooking Oil as a Source for Renewable Fuel in Romania. IOP Conf. Ser. Mater. Sci. Eng. 147: 012133. Doi: 10.1088/1757-899X/147/1/012133.

A. K. Banerji, D. Chakraborty, A. Mudi, and P. Chauhan. 2022. Materials Today: Proceedings Characterization of Waste Cooking Oil and Waste Engine Oil on Physical Properties of Aged Bitumen. Materials Today Proceedings. 59: 1694–1699. Doi: 10.1016/j.matpr.2022.03.401.

M. A. Al-Ghouti and L. Al-Atoum. 2009. Virgin and Recycled Engine Oil Differentiation: A Spectroscopic Study. Journal of Environmental Management. 90(1): 187–195. Doi: 10.1016/j.jenvman.2007.08.018.

Z. Jwaida, A. Dulaimi, A. Bahrami, R. P. Jaya, and Y. Wang. 2024. Case Studies in Construction Materials Analytical Review on the potential use of waste engine oil in asphalt and pavement engineering. 20(February): 1–29. Doi: 10.1016/j.cscm.2024.e02930.

Z. Xintao, C. Meizhu, Z. Yuechao, W. Shaopeng, C. Dongyu, and S. Yuanhang. 2022. Influence of Macromolecular Substances in Waste Cooking Oil on Rejuvenation Properties of Asphalt with Different Aging Degrees. Construction and Building Materials. 361(September): 129522. Doi: 10.1016/j.conbuildmat.2022.129522.

H. Jahanbakhsh, M. M. Karimi, H. Naseri, and F. M. Nejad. 2020. Sustainable Asphalt Concrete Containing High Reclaimed Asphalt Pavements and Recycling Agents: Performance Assessment, Cost Analysis, and Environmental Impact. Journal of Cleaner Production. 244. Doi: 10.1016/j.jclepro.2019.118837.

S. Liu, A. Peng, J. Wu, and S. B. Zhou. 2018. Waste Engine Oil Influences on Chemical and Rheological Properties of Different Asphalt Binders. Construction and Building Materials. 191: 1210–1220. Doi: 10.1016/j.conbuildmat.2018.10.126.

H. Luo et al. 2021. Analysis of Relationship between Component Changes and Performance Degradation of Waste-Oil-Rejuvenated Asphalt. Construction and Building Materials. 297: 123777. Doi: 10.1016/j.conbuildmat.2021.123777.

Y. Wang and P. Hao. 2021. Rheological and Fatigue-Healing Durability of Asphalt Containing Synthesized Microcapsules with Refined Waste Oil Core. Construction and Building Materials. 274: 121964. Doi: 10.1016/j.conbuildmat.2020.121964.

S. Zhou, C. Lu, X. Zhu, and F. Li. 2021. Preparation and Characterization of High-strength Geopolymer based on BH-1 Lunar Soil Simulant with Low Alkali Content. Engineering. 7(11): 1631–1645. Doi: 10.1016/j.eng.2020.10.016.

N. Savic et al. 2016. Influence of Biodiesel Fuel Composition on the Morphology and Microstructure of Particles Emitted from Diesel Engines. Carbon Scientific Journal. 104: 179–189. Doi: 10.1016/j.carbon.2016.03.061.

S. Liu, A. Peng, S. Zhou, J. Wu, W. Xuan, and W. Liu. 2019. Evaluation of the Aging Behaviour of Waste Engine Oil-Modified Asphalt Binders. Construction and Building Materials. 223: 394–408. Doi: 10.1016/j.conbuildmat.2019.07.020.

H. B. Abdullah, R. Irmawati, I. Ismail, and N. A. Yusof. 2020. Utilization of Waste Engine Oil for Carbon Nanotube Aerogel Production using Floating Catalyst Chemical Vapor Deposition. Journal of Cleaner Production. 261: 121188. Doi: 10.1016/j.jclepro.2020.121188.

T. Shoukat and P. J. Yoo. 2018. Rheology of Asphalt Binder Modified with 5W30 Viscosity Grade Waste Engine Oil. Applied Sciences. 8(7). Doi: 10.3390/app8071194.

Z. H. Al-Saffar et al. 2020. Evaluating the Chemical and Rheological Attributes of Aged Asphalt: Synergistic Effects of Maltene and Waste Engine Oil Rejuvenators. Arabian Journal for Science and Engineering. 45(10): 8685–8697. Doi: 10.1007/s13369-020-04842-7.

H. Li et al. 2019. Research on the Development and Regeneration Performance of Asphalt Rejuvenator based on the Mixed Waste Engine Oil and Waste Cooking Oil. International Journal of Pavement Research and Technology. 12(3): 336–346. Doi: 10.1007/s42947-019-0040-1.

B. Shu et al. 2021. The Properties of Different Healing Agents Considering the Micro-self-healing Process of Asphalt with Encapsulations. Materials (Basel). 14(1): 1–18. Doi: 10.3390/ma14010016.

I. A. Qurashi and A. K. Swamy. 2018. Viscoelastic Properties of Recycled Asphalt Binder containing. Journal of Cleaner Production. Doi 10.1016/j.jclepro.2018.01.237.

R. S. Bie, X. F. Song, Q. Q. Liu, X. Y. Ji, and P. Chen. 2015. Studies on Effects of Burning Conditions and Rice Husk Ash (RHA) Blending Amount on the Mechanical Behavior of Cement. Cement and Concrete Composites. 55: 162–168. Doi: 10.1016/j.cemconcomp.2014.09.008.

S. I. Khassaf, A. T. Jasim, and F. K. Mahdi. 2014. Investigation the Properties Of Concrete Containing Rice Husk Ash to Reduction the Seepage in Canals. International Journal of Scientific and Technology Research. 3(4): 348–354.

S. D. Nagrale, H. Hajare, and P. R. Modak. 2012. Utilization of Rice Husk Ash. International Journal of Applied Engineering Research. 2(4): 1–5.

N. R. Camargo-Pérez, J. Abellán-García, and L. Fuentes. 2023. Use of Rice Husk Ash as a Supplementary Cementitious Material in Concrete Mix for Road Pavements. Journal of Materials Research and Technology. 25: 6167–6182. Doi: 10.1016/j.jmrt.2023.07.033.

M. A. Noaman, M. R. Karim, and M. N. Islam. 2019. Comparative Study of Pozzolanic and Filler Effect of Rice Husk Ash on the Mechanical Properties and Microstructure of Brick Aggregate Concrete. Heliyon. 5(6): e01926. Doi: 10.1016/j.heliyon.2019.e01926.

S. A. Farid and M. M. Zaheer. 2023. Production of New Generation and Sustainable Concrete using Rice Husk Ash (RHA): A Review. Materials Today Proceedings. Doi: 10.1016/j.matpr.2023.06.034.

S. K. Antiohos, J. G. Tapali, M. Zervaki, J. Sousa-Coutinho, S. Tsimas, and V. G. Papadakis. 2013. Low Embodied Energy Cement Containing Untreated RHA: A Strength Development and Durability Study. Construction and Building Materials. 49: 455–463. Doi: 10.1016/j.conbuildmat.2013.08.046.

A. R. Djamaluddin, M. A. Caronge, M. W. Tjaronge, I. R. Rahim, and N. M. Noor. 2018. Abrasion Resistance and Compressive Strength of Unprocessed Rice Husk Ash Concrete. Asian Journal of Civil Engineering. 19(7): 867–876. Doi: 10.1007/s42107-018-0069-5.

M. Safiuddin, J. S. West, and K. A. Soudki. 2012. Properties of Freshly Mixed Self-consolidating Concretes Incorporating Rice Husk Ash as a Supplementary Cementing Material. Construction and Building Materials. 30: 833–842. Doi: 10.1016/j.conbuildmat.2011.12.066.

G. A. Habeeb and M. M. Fayyadh. 2009. Rice Husk Ash Concrete: The Effect of RHA Average Particle Size on Mechanical Properties and Drying Shrinkage. Australian Journal of Basic and Applied Sciences. 3(3): 1616–1622.

K. Ganesan, K. Rajagopal, and K. Thangavel. 2008. Rice Husk Ash Blended Cement: Assessment of Optimal Level of Replacement for Strength and Permeability Properties of Concrete. Construction and Building Materials. 22(8): 1675–1683. Doi: 10.1016/j.conbuildmat.2007.06.011.

R. Mistry and T. Kumar Roy. 2021. Performance Evaluation of Bituminous Mix And Mastic Containing Rice Husk Ash and Fly Ash as Filler. Construction and Building Materials. 268: 121187. Doi: 10.1016/j.conbuildmat.2020.121187.

S. K. K. Tulashie, P. Ebo, J. K. Ansah, and D. Mensah. 2020. Production of Portland Pozzolana Cement from Rice Husk Ash. Social Science Research Network Electronic Journal. Doi: 10.2139/ssrn.3739628.

J. Abellán-García. 2020. Four-layer Perceptron Approach for Strength Prediction of UHPC. Construction and Building Materials. 256. Doi: 10.1016/j.conbuildmat.2020.119465.

A. Ameli, R. Babagoli, N. Norouzi, F. Jalali, and F. Poorheydari Mamaghani. 2020. Laboratory Evaluation of the Effect of Coal Waste Ash (CWA) and Rice Husk Ash (RHA) on the Performance of Asphalt Mastics and Stone Matrix Asphalt (SMA) Mixture. Construction and Building Materials. 236: 117557. Doi: 10.1016/j.conbuildmat.2019.117557.

H. T. Le and H. M. Ludwig. 2020. Alkali Silica Reactivity of Rice Husk Ash in Cement Paste. Construction and Building Materials. 243: 118145. Doi: 10.1016/j.conbuildmat.2020.118145.

S. K. Das et al. 2020. Characterization and Utilization of Rice Husk Ash (RHA) in Fly Ash - Blast Furnace Slag based Geopolymer Concrete for Sustainable Future. Materials Today Proceedings. 33: 5162–5167. Doi: 10.1016/j.matpr.2020.02.870.

H. Zhu, G. Liang, Z. Zhang, Q. Wu, and J. Du. 2019. Partial Replacement of Metakaolin with Thermally Treated Rice Husk Ash in Metakaolin-based Geopolymer. Construction and Building Materials. 221: 527–538. Doi: 10.1016/j.conbuildmat.2019.06.112.

M. A. Mosaberpanah and S. A. Umar. 2020. Utilizing Rice Husk Ash as Supplement to Cementitious Materials on Performance of Ultra High-Performance Concrete: – A review. Materials Today Sustainability. 7–8: 100030. Doi: 10.1016/j.mtsust.2019.100030.

V. Kannan and K. Ganesan. 2016. Effect of Tricalcium Aluminate on Durability Properties of Self-Compacting Concrete Incorporating Rice Husk Ash and Metakaolin. Journal of Materials in Civil Engineering. 28(1): 1–10. Doi: 10.1061/(ASCE)mt.1943-5533.0001330.

G. C. Cordeiro, R. D. Toledo Filho, and E. De Moraes Rego Fairbairn. 2009. Use of Ultrafine Rice Husk Ash with High-carbon Content as Pozzolan in High Performance Concrete. Materials and Structures Construction. 42(7): 983–992. Doi: 10.1617/s11527-008-9437-z.

G. Sua-Iam and N. Makul. 2013. Utilization of Limestone Powder to Improve the Properties of Self-compacting Concrete Incorporating High Volumes of Untreated Rice Husk Ash as Fine Aggregate. Construction and Building Materials, 38: 455–464. Doi: 10.1016/j.conbuildmat.2012.08.016.

H. T. Le, S. T. Nguyen, and H. M. Ludwig. 2014. A Study on High-Performance Fine-Grained Concrete Containing Rice Husk Ash. Journal of Concrete Structures and Materials. 8(4): 301–307. Doi: 10.1007/s40069-014-0078-z.

S. A. Memon, M. A. Shaikh, and H. Akbar. 2011. Utilization of Rice Husk Ash as Viscosity Modifying Agent in Self Compacting Concrete. Construction and Building Materials. 25(2): 1044–1048. Doi: 10.1016/j.conbuildmat.2010.06.074.

P. Chindaprasirt and S. Rukzon. 2008. Strength, Porosity and Corrosion Resistance of Ternary Blend Portland Cement, Rice Husk Ash, and Fly Ash Mortar. Construction and Building Materials. 22(8): 1601–1606. Doi: 10.1016/j.conbuildmat.2007.06.010.

S. M. Zabihi and H. R. Tavakoli. 2019. Evaluation of Monomer Ratio on Performance of GGBFS-RHA Alkali-activated Concretes. Construction and Building Materials. 208: 326–332. Doi: 10.1016/j.conbuildmat.2019.03.026.

S. H. Kang, S. G. Hong, and J. Moon. 2019. The Use of Rice Husk Ash as Reactive Filler in Ultra-high Performance Concrete. Cement and Concrete Research. 115(August): 389–400. Doi: 10.1016/j.cemconres.2018.09.004.

S. M. Zabihi, H. Tavakoli, and E. Mohseni. 2018. Engineering and Microstructural Properties of Fiber-Reinforced Rice Husk–Ash Based Geopolymer Concrete. Journal of Materials in Civil Engineering. 30(8): 1–10. Doi: 10.1061/(ASCE)mt.1943-5533.0002379.

A. Joshaghani and M. A. Moeini. 2018. Evaluating the Effects of Sugarcane-Bagasse Ash and Rice-Husk Ash on the Mechanical and Durability Properties of Mortar. Journal of Materials in Civil Engineering. 30(7): 1–14. Doi: 10.1061/(ASCE)mt.1943-5533.0002317.

S. H. Jung, V. Saraswathy, S. Karthick, P. Kathirvel, and S. J. Kwon. 2018. Microstructure Characteristics of Fly Ash Concrete with Rice Husk Ash and Lime Stone Powder. International Journal of Concrete Structures and Materials. 12(1). Doi: 10.1186/s40069-018-0257-4.

M. Arabani and S. A. Tahami. 2017. Assessment of Mechanical Properties of Rice Husk Ash Modified Asphalt Mixture. Construction and Building Materials. 149: 350–358. Doi: 10.1016/j.conbuildmat.2017.05.127.

H. Huang, X. Gao, H. Wang, and H. Ye. 2017. Influence of rice Husk Ash on Strength and Permeability of Ultra-high Performance Concrete. Construction and Building Materials. 149: 621–628. Doi: 10.1016/j.conbuildmat.2017.05.155.

S. A. Zareei, F. Ameri, F. Dorostkar, and M. Ahmadi. 2017. Rice Husk Ash as a Partial Replacement of Cement in High Strength Concrete Containing Micro Silica: Evaluating Durability and Mechanical Properties. Case Studies in Construction Materials. 7(May): 73–81. Doi: 10.1016/j.cscm.2017.05.001.

J. Wei and C. Meyer. 2016. Utilization of Rice Husk Ash in Green Natural Fiber-reinforced Cement Composites: Mitigating Degradation of Sisal Fiber. Cement and Concrete Research. 81: 94–111. Doi: 10.1016/j.cemconres.2015.12.001.

E. Mohseni, M. M. Khotbehsara, F. Naseri, M. Monazami, and P. Sarker. 2016. Polypropylene Fiber Reinforced Cement Mortars Containing Rice Husk Ash and Nano-alumina. Construction and Building Materials. 111: 429–439. Doi: 10.1016/j.conbuildmat.2016.02.124.

H. K. Tchakouté, C. H. Rüscher, S. Kong, E. Kamseu, and C. Leonelli. 2016. Geopolymer Binders from Metakaolin using Sodium Glass from Waste Glass and Rice Husk Ash as Alternative Activators: A Comparative Study. Construction and Building Materials. 114: 276–289. Doi: 10.1016/j.conbuildmat.2016.03.184.

M. R. Karim, M. F. M. Zain, M. Jamil, and F. C. Lai. 2015. Development of a Zero-cement Binder using Slag, Fly Ash, and Rice Husk Ash with Chemical Activator. Advances in Materials Science and Engineering. Doi: 10.1155/2015/247065.

W. Xu et al. 2015. Effect of Rice Husk Ash Fineness on Porosity and Hydration Reaction of Blended Cement Paste. Construction and Building Materials. 89: 90–101. Doi: 10.1016/j.conbuildmat.2015.04.030.

G. Rodríguez De Sensale. 2003. High-performance Concrete with Residual Rice-husk Ash. Role of Cement Science in Sustainable Development - Proceedings of the International Symposium - Celebration Concrete People Practice Dedicated to Professor Fred Glaser. 255–264. Doi: 10.1680/rocisd.32477.0025.

J. S. Uchima, O. J. Restrepo, and J. I. Tobón. 2015. Pozzolanicity of the Material Obtained in the Simultaneous Calcination of Biomass and Kaolinitic Clay. Construction and Building Materials. 95: 414–420. Doi: 10.1016/j.conbuildmat.2015.07.104.

V. T. A. Van, C. Rößler, D. D. Bui, and H. M. Ludwig. 2014. Rice Husk Ash as both Pozzolanic Admixture and Internal Curing Agent in Ultra-high Performance Concrete. Cement and Concrete Composites. 53: 270–278. Doi: 10.1016/j.cemconcomp.2014.07.015.

S. Hesami, S. Ahmadi, and M. Nematzadeh. 2014. Effects of Rice Husk Ash and Fiber on Mechanical Properties of Pervious Concrete Pavement. Construction and Building Materials. 53: 680–691. Doi: 10.1016/j.conbuildmat.2013.11.070.

R. Bayuaji and M. F. Nuruddin. 2014. Influence of Microwave Incinerated Rice Husk Ash on the Hydration of Foamed Concrete. Advances in Civil Engineering. Doi: 10.1155/2014/482176.

Ş. Sargin, M. Saltan, N. Morova, S. Serin, and S. Terzi. 2013. Evaluation of Rice Husk Ash as Filler in Hot Mix Asphalt Concrete. Construction and Building Materials. 48: 390–397. Doi: 10.1016/j.conbuildmat.2013.06.029.

H. Noorvand, A. A. Abang Ali, R. Demirboga, N. Farzadnia, and H. Noorvand. 2013. Incorporation of Nano TiO2 in Black Rice Husk Ash Mortars. Construction and Building Materials. 47: 1350–1361. Doi: 10.1016/j.conbuildmat.2013.06.066.

J. M. Mejía, R. Mejía de Gutiérrez, and F. Puertas. 2013. Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente. Materials and Constructions. 63(311): 361–375. Doi 10.3989/mc.2013.04712.

S. H. Sathawane, V. S. Vairagade, and K. S. Kene. 2013. Combine Effect of Rice Husk Ash and Fly Ash on Concrete by 30% Cement Replacement. Procedia Engineering. 51: 35–44. Doi: 10.1016/j.proeng.2013.01.009.

P. Kathirvel, V. Saraswathy, S. P. Karthik, and A. S. S. Sekar. 2013. Strength and Durability Properties of Quaternary Cement Concrete Made with Fly Ash, Rice Husk Ash, and Limestone Powder. Arabian Journal for Science and Engineering. 38(3): 589–598. Doi: 10.1007/s13369-012-0331-1.

J. Hadipramana, A. A. A. Samad, A. M. A. Zaidi, N. Mohammad, and F. V. Riza. 2013. Effect of Uncontrolled Burning Rice Husk Ash in Foamed Concrete. Advanced Materials Research. 626: 769–775. Doi: 10.4028/www.scientific.net/AMR.626.769.

A. E. Ahmed and F. Adam. 2007. Indium Incorporated Silica from Rice Husk and Its Catalytic Activity. Microporous Mesoporous Materials. 103(1-3): 284–295. Doi: 10.1016/j.micromeso.2007.01.055.

P. Chindaprasirt, P. Kanchanda, A. Sathonsaowaphak, and H. T. Cao. 2007. Sulfate Resistance of Blended Cement Containing Fly Ash and Rice Husk Ash. Construction and Building Materials. 21(6): 1356–1361. Doi: 10.1016/j.conbuildmat.2005.10.005.

V. Kannan and K. Ganesan. 2014. Chloride and Chemical Resistance of Self-compacting Concrete Containing Rice Husk Ash and Metakaolin. Construction and Building Materials. 51: 225–234. Doi: 10.1016/j.conbuildmat.2013.10.050.

W. Ma, Y. Wang, L. Huang, L. Yan, and B. Kasal. 2023. Natural and Recycled Aggregate Concrete Containing Rice Husk Ash as Replacement of Cement: Mechanical Properties, Microstructure, Strength Model and Statistical Analysis. Journal of Building Engineering. 66(December): 105917. Doi 10.1016/j.jobe.2023.105917.

M. Thiedeitz, B. Ostermaier, and T. Kränkel. 2022. Rice Husk Ash as an Additive in Mortar – Contribution to Microstructural, Strength and Durability Performance. Resources, Conservation, and Recycling. 184(June). Doi: 10.1016/j.resconrec.2022.106389.

K. K. Alaneme, J. O. Ekperusi, and S. R. Oke. 2018. Corrosion Behaviour of Thermal Cycled Aluminium Hybrid Composites Reinforced with Rice Husk Ash and Silicon Carbide. Journal of King Saud University - Engineering Sciences. 30(4): 391–397. Doi: 10.1016/j.jksues.2016.08.001.

N. Yuzer et al. 2013. Influence of Raw Rice Husk Addition on Structure and Properties of Concrete. Construction and Building Materials. 44: 54–62. Doi: 10.1016/j.conbuildmat.2013.02.070.

C. L. Hwang and S. Chandra. 1996. The Use of Rice Husk Ash in Concrete. Waste Mater. Used Concrete Manufacturers. 184–234. Doi: 10.1016/b978-081551393-3.50007-7.

S. Sahoo, P. K. Parhi, and B. Chandra Panda. 2021. Durability Properties of Concrete with Silica Fume and Rice Husk Ash. Cleaner Engineering and Technology. 2(January): 100067. Doi: 10.1016/j.clet.2021.100067.

V. Saraswathy and H. W. Song. 2007. Corrosion Performance of Rice Husk Ash Blended Concrete. Construction and Building Materials. 21(8): 1779–1784. Doi: 10.1016/j.conbuildmat.2006.05.037.

D. Chopra, R. Siddique, and Kunal. 2015. Strength, Permeability and Microstructure of Self-compacting Concrete Containing Rice Husk Ash. Biological System Engineering. 130: 72–80. Doi: 10.1016/j.biosystemseng.2014.12.005.

P. Nuaklong, P. Jongvivatsakul, T. Pothisiri, V. Sata, and P. Chindaprasirt. 2020. “nfluence of Rice Husk Ash on Mechanical Properties and Fire Resistance of recycled Aggregate High-calcium Fly Ash Geopolymer Concrete. Journal of Cleaner Production. 252: 119797. Doi: 10.1016/j.jclepro.2019.119797.

B. González-Corrochano, J. Alonso-Azcárate, M. Rodas, F. J. Luque, and J. F. Barrenechea. 2010. Microstructure and Mineralogy of Lightweight Aggregates Produced from Washing Aggregate Sludge, Fly Ash and Used Motor Oil. Cement and Concrete Composites. 32(9): 694–707. Doi: 10.1016/j.cemconcomp.2010.07.014.

A. M. Rodríguez-alloza, J. Gallego, I. Pérez, A. Bonati, and F. Giuliani. 2014. High and Low-temperature Properties of Crumb Rubber Modified Binders Containing Warm Mix Asphalt Additives. Construction and Building Materials. 53: 460–466. Doi: 10.1016/j.conbuildmat.2013.12.026.

R. Zhang, A. Ranjbar, F. Zhou, and D. Deb. 2023. Effect of Chemical Warm-mix Additives on Asphalt Binder Rheological and Chemical Properties in the Context of Aging. Construction and Building Materials. 393(October): 132061. Doi 10.1016/j.conbuildmat.2023.132061.

J. D’Angelo et al. 2008. Warm-Mix Asphalt : European Practice. Federal Highway Administration. 68.

S. Zhao, B. Huang, X. Shu, X. Jia, and M. Woods. 2012. Laboratory Performance Evaluation of Warm-mix Asphalt Containing High Percentages of Reclaimed Asphalt Pavement. Transportation Research Record. 2294: 98–105. Doi 10.3141/2294-11.

P. Cui, T. Ma, S. Wu, G. Xu, and F. Wang. 2023. Texture Characteristic and Its Enhancement Mechanism in Stone Mastic Asphalt Incorporating Steel Slag. Construction and Building Materials. 369(November): 130440. Doi 10.1016/j.conbuildmat.2023.130440.

S. Zhao, B. Huang, X. Shu, and M. Woods. 2013. Comparative Evaluation of Warm Mix Asphalt Containing High Percentages of Reclaimed Asphalt Pavement. Construction and Building Materials. 44: 92–100. Doi: 10.1016/j.conbuildmat.2013.03.010.

L. P. Ingrassia, A. Virgili, and F. Canestrari. 2020. Case Studies in Construction Materials Effect of Geocomposite Reinforcement on the Performance of Thin Asphalt Pavements : Accelerated Pavement Testing and Laboratory Analysis. Case Studies in Construction Materials. 12: e00342. Doi: 10.1016/j.cscm.2020.e00342.

C. Hettiarachchi, X. Hou, J. Wang, and F. Xiao. 2019. A Comprehensive Review on the Utilization of Reclaimed Asphalt Material with Warm Mix Asphalt Technology. Construction and Building Materials. 227: 117096. Doi: 10.1016/j.conbuildmat.2019.117096.

P. Caputo et al. 2020. The Role of Additives in Warm Mix Asphalt Technology: An Insight into Their Mechanisms of Improving an Emerging Technology. Nanomaterials. 10(6): 1–17. Doi: 10.3390/nano10061202.

A. Bhatt, S. Priyadarshini, and A. Acharath. 2019. Case Studies in Construction Materials Physical, Chemical, and Geotechnical Properties of Coal Fly Ash : A Global Review. Case Studies in Construction Materials. 11: e00263. Doi: 10.1016/j.cscm.2019.e00263.

J. Chen et al. 2021. New Innovations in Pavement Materials and Engineering: A Review on Pavement Engineering Research 2021. Journal of Traffic and Transportation Engineering. 8(6): 815–999. Doi: 10.1016/j.jtte.2021.10.001.

A. Sha et al. 2021. Advances and Development Trends in Eco-friendly Pavements. Journal of Road Engineering. 1(October): 1–42. Doi: 10.1016/j.jreng.2021.12.002.

E. Rochishnu, A. Ramesh, and V. Venkat. 2020. Materials Today: Proceedings Sustainable Pavement Technologies - Performance of High RAP in WMA Surface Mixture Containing Nano Glass Fibers. Materials Today Proceedings. Doi: 10.1016/j.matpr.2020.07.643.

S. Ridha et al. 2021. Thermal Performance of Cooling Strategies for Asphalt Pavement : A State-of-the-art Review. Journal of Traffic and Transportation Engineering. 8(3): 356–373. Doi: 10.1016/j.jtte.2021.02.001.

G. Cheraghian et al. 2020. Warm Mix Asphalt Technology: An Up-to-date Review. Journal of Cleaner Production. 268: 122128. Doi: 10.1016/j.jclepro.2020.122128.

A. K. Choudhary, J. N. Jha, K. S. Gill, and S. K. Shukla. 2014 Utilization of Fly Ash and Waste Recycled Product Reinforced with Plastic Wastes as Construction Materials in Flexible Pavement. Geo-Congress 2014 Technical Papers, GSP 234. American Society of Civil Engineers (ASCE). 3890–3902. Doi: 10.1061/9780784413272.377.

N. Jamaluddin, M. F. Arshad, and P. J. Ramadhansyah. 2019. Effects of Ground Coal Bottom Ash on the Properties of Concrete. Journal of Engineering Science and Technology. 14(1): 338–350.

M. E. Al-Atroush. 2022. Structural Behavior of the Geothermal-electrical Asphalt Pavement : A Critical Review Concerning Climate Change. Heliyon. 8(12): e12107. Doi: 10.1016/j.heliyon.2022.e12107.

A. Vaitkus, D. Čygas, A. Laurinavičius, and Z. Perveneckas. 2009. Analysis and Evaluation of Possibilities for the Use of Warm Mix Asphalt in Lithuania. Baltic Journal of Road and Bridge Engineering. 4(2): 80–86. Doi: 10.3846/1822-427X.2009.4.80-86.

A. Almeida-costa and A. Benta. 2016. Economic and Environmental Impact Study of Warm Mix Asphalt Compared to Hot Mix Asphalt. Journal of Cleaner Production. 112: 2308–2317. Doi: 10.1016/j.jclepro.2015.10.077.

M. O. Hamzah, A. Jamshidi, and Z. Shahadan. 2010. Evaluation of the Potential of Sasobit Ò to Reduce Required Heat Energy and CO2 Emission in the Asphalt Industry. Journal of Cleaner Production. 18(18): 1859–1865. Doi: 10.1016/j.jclepro.2010.08.002.

J. Croteau and P. Eng. 2008. Warm Mix Asphalt Paving Technologies: A Road Builder’s Perspective. 1–12.

J. D. Doyle and I. L. Howard. 2013. Road Materials and Pavement Design Rutting and Moisture Damage Resistance of High Reclaimed Asphalt Pavement Warm Mixed Asphalt : Loaded Wheel Tracking Vs . Conventional Methods. November 2014: 37–41. Doi: 10.1080/14680629.2013.812841.

S. D. Capitão, L. G. Picado-Santos, and F. Martinho. 2012. Pavement Engineering Materials: Review on the Use of Warm-mix Asphalt. Construction and Building Materials. 36: 1016–1024. Doi: 10.1016/j.conbuildmat.2012.06.038.

M. C. Rubio, G. Martínez, L. Baena, and F. Moreno. 2012. Warm Mix Asphalt: An overview. Journal of Cleaner Production. 24: 76–84. Doi: 10.1016/j.jclepro.2011.11.053.

S. Yang, F. Rachman, and H. Awan. 2018. Effect of Moisture in Aggregate on Adhesive Properties of Warm-mix Asphalt. Construction and Building Materials. 190: 1295–1307. Doi: 10.1016/j.conbuildmat.2018.08.208.

P. Yang and J. Liu. 2018. Rheological Properties of Deurex – Modified WMA Binder Containing SBS. 6466. Doi: 10.1080/10916466.2018.1437633.

W. N. A. W. Azahar, R. P. Jaya, M. R. Hainin, M. Bujang, and N. Ngadi. 2017. Mechanical Performance of Asphaltic Concrete Incorporating Untreated and Treated Waste Cooking Oil. Construction and Building Materials. 150: 653–663. Doi: 10.1016/j.conbuildmat.2017.06.048.

D. Zhang, M. Chen, S. Wu, J. Liu, and S. Amirkhanian. 2017. Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties. Materials (Basel). 10(5). Doi: 10.3390/ma10050508.

F. Wang, Y. Fang, Z. Chen, and H. Wei. 2018. Effect of Waste Engine Oil on Asphalt Reclaimed Properties. American Institute of Physics Conference Proceedings. 1973. Doi: 10.1063/1.5041396.

C. Plati. 2019. Sustainability Factors in Pavement Materials, Design, and Preservation Strategies: A Literature Review. Construction and Building Materials. 211: 539–555. Doi: 10.1016/j.conbuildmat.2019.03.242.

S. M. A. Qaidi et al. 2022. Case Studies in Construction Materials Sustainable Utilization of Red Mud Waste (Bauxite Residue) and Slag for the Production of Geopolymer Composites : A Review. Case Studies in Construction Materials. 16(March): e00994. Doi 10.1016/j.cscm.2022.e00994.

N. Singh, M. Mithulraj, and S. Arya. 2018. Resources, Conservation & Recycling Influence of Coal Bottom Ash as Fine Aggregates Replacement on Various Properties of Concretes : A Review. Resources, Conservation, and Recycling. 138(March): 257–271. Doi: 10.1016/j.resconrec.2018.07.025.

J. Li and J. Wang. 2019. Comprehensive Utilization and Environmental Risks of Coal Gangue : A Review. Journal of Cleaner Production. 239: 117946. Doi: 10.1016/j.jclepro.2019.117946.

S. Das, S. H. Lee, P. Kumar, K. H. Kim, S. S. Lee, and S. S. Bhattacharya. 2019. Solid Waste Management: Scope and the Challenge of Sustainability. Journal of Cleaner Production. 228: 658–678. Doi: 10.1016/j.jclepro.2019.04.323.

H. Kamil, A. Dulaimi, T. Al-mansoori, and S. Al-busaltan. 2021. The Future of Eco-friendly Cold Mix Asphalt. Renewable and Sustainable Energy Reviews. 149(May): 111318. Doi: 10.1016/j.rser.2021.111318.

Downloads

Published

2025-01-24

Issue

Section

Science and Engineering

How to Cite

A REVIEW OF THE QUALITIES AND UTILIZATION OF WASTE MATERIALS IN WARM MIX ASPHALT CONCRETE. (2025). Jurnal Teknologi (Sciences & Engineering), 87(2), 269-296. https://doi.org/10.11113/jurnalteknologi.v87.22346