THE EFFECT OF HEAT-TREATMENT ON THE MECHANICAL PROPERTIES OF EXPANDED GLASS PARTICLE/A356 SYNTACTIC FOAM

Authors

  • Kadhim Al-sahlani Mechanical Engineering Department, College of Engineering, University of Thi-Qar, 64001, Nasiriyah city, Iraq
  • Ahmed G. Hassan Biomedical Engineering Department, College of Engineering, University of Thi-Qar, 64001, Nasiriyah city, Iraq
  • Zainab Salim Hadawi Chemistry Department, College of Science, University of Thi-Qar, 64001, Nasiriyah City, Iraq

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22406

Keywords:

Metal syntactic foam, mechanical properties, microstructure properties, expanded glass particle, A356 matrix, infiltration method

Abstract

This research investigates the manufacturing of metal syntactic foams (MSFs) using a packed bed of porous (2-2.8 mm) expanded glass (EG) within an A356 alloy matrix. To this end, the counter-gravity infiltration casting technique is employed to manufacture the specimens. The density of the MSFs ranges from 1.05 to 1.17 g/cm3, making it one of the lowest densities foams, attributed to the filler particles' low bulk density. The study investigates the influence of T6 heat treatment on the mechanical properties and microstructural characteristics of the manufactured MSFs. The mechanical properties of the MSFs are characterized under quasi-static compressive loads at 1 mm/min. After heat treatment, the compression test results indicate a significant enhancement in most mechanical properties. Compression strength and plateau stress are approximately doubled compared to as-cast foams for samples with similar densities. While energy absorption of the MSFs triples in heat-treated conditions. These improvements are attributed to changes in the matrix microstructure due to thermal treatment. Microstructural analysis reveals that Si particles, initially sharp and continuous within inter-dendritic boundaries, become blurry and discontinuous through spheroidization after thermal treatment. This hinders crack growth in the cell wall and mitigates the effects of casting defects and the columnar dendritic structure. The majority of mechanical properties in both heat-treated (HT) and as-cast (AC) foams exhibited an increase in density due to an increase in the matrix fraction. However, plateau end strain and energy absorption efficiency demonstrated an independent effect of heat treatment and density.

 

References

P. K. Rohatgi, N. Gupta, B. F. Schultz, and D. D. Luong. 2011. The Synthesis, Compressive Properties, and Applications of Metal Matrix Syntactic Foams. JOM. 63(2): 36-42. Doi: 10.1007/s11837-011-0026-1.

A. Kennedy. 2012. Porous Metals and Metal Foams Made from Powders. [Online]. Available: www.intechopen.com.

I. N. Orbulov and J. Ginsztler. 2012. Compressive Characteristics of Metal Matrix Syntactic Foams. Compos Part A Appl Sci Manuf. 43(4): 553-561. Doi: 10.1016/j.compositesa.2012.01.008.

T. Fiedler, K. Al-Sahlani, P. A. Linul, and E. Linul. 2020. Mechanical Properties of A356 and ZA27 Metallic Syntactic Foams at Cryogenic Temperature. J Alloys Compd. 813. Doi: 10.1016/j.jallcom.2019.152181.

A. Wright and A. Kennedy. 2017. The Processing and Properties of Syntactic Al Foams Containing Low Cost Expanded Glass Particles. Adv Eng Mater. 19(11). Doi: 10.1002/adem.201600467.

I. N. Orbulov, A. Szlancsik, A. Kemény, and D. Kincses. 2020. Compressive Mechanical Properties of Low-cost, Aluminium Matrix Syntactic Foams. Compos Part A Appl Sci Manuf. 135: 105923. Doi: 10.1016/j.compositesa.2020.105923.

M. Taherishargh, I. V. Belova, G. E. Murch, and T. Fiedler. 2015. Pumice/aluminium Syntactic Foam. Materials Science and Engineering: A. 635: 102-108. Doi: 10.1016/j.msea.2015.03.061.

M. Taherishargh, E. Linul, S. Broxtermann, and T. Fiedler. 2018. The Mechanical Properties of Expanded Perlite-aluminium Syntactic Foam at Elevated Temperatures. J Alloys Compd. 737: 590-596. Doi: 10.1016/j.jallcom.2017.12.083.

A. Kemény, N. Movahedi, T. Fiedler, J. E. Maróti, and I. N. Orbulov. 2022. The Influence of Infiltration Casting Technique on Properties of Metal Syntactic Foams and Their Foam-Filled Tube Structures. Materials Science and Engineering: A. 852: 143706. Doi: 10.1016/j.msea.2022.143706.

N. Movahedi, G. E. Murch, I. V. Belova, and T. Fiedler. 2019. Functionally Graded Metal Syntactic Foam: Fabrication and Mechanical Properties. Mater Des. 168: 107652. Doi: 10.1016/j.matdes.2019.107652.

X. F. Tao and Y. Y. Zhao. 2012. Compressive Failure of Al Alloy Matrix Syntactic Foams Manufactured by Melt Infiltration. Materials Science and Engineering: A. 549: 228-232. Doi: 10.1016/j.msea.2012.04.047.

X. F. Tao and Y. Y. Zhao. 2009. Compressive Behavior of Al Matrix Syntactic Foams Toughened with Al Particles. Scr Mater. 61(5): 461-464. Doi: 10.1016/j.scriptamat.2009.04.045.

Ç. Bolat, İ. C. Akgün, and A. Gökşenli. 2022. Effect of Aging Heat Treatment on Compressive Characteristics of Bimodal Aluminum Syntactic Foams Produced by Cold Chamber Die Casting. International Journal of Metalcasting. 16(2): 646-662. Doi: 10.1007/s40962-021-00629-0.

M. Taherishargh, I. V. Belova, G. E. Murch, and T. Fiedler. 2014. On the Mechanical Properties of Heat-treated Expanded Perlite-aluminium Syntactic Foam. Mater Des. 63: 375-383. Doi: 10.1016/j.matdes.2014.06.019.

E. Linul, D. Lell, N. Movahedi, C. Codrean, and T. Fiedler. 2019. Compressive Properties of Zinc Syntactic Foams at Elevated Temperatures. Compos B Eng. 167: 122-134. Doi: 10.1016/j.compositesb.2018.12.019.

N. Movahedi, G. Murch, I. Belova, and T. Fiedler. 2019. Effect of Heat Treatment on the Compressive Behavior of Zinc Alloy ZA27 Syntactic Foam. Materials. 12(5): 792. Doi: 10.3390/ma12050792.

I C Akgün, C. ¸ Bolat, and A. G. Gök¸senli. 2021. Effect of Aging Heat Treatment on Mechanical Properties of Expanded Glass Reinforced Syntactic Metal Foam. Konvove Mater. 59: 345-355. Doi: 10.4149/km.

K. Al-Sahlani, M. Taherishargh, E. Kisi, and T. Fiedler. 2017. Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams. Materials. 10(9). Doi: 10.3390/ma10091073.

K. Al-Sahlani, S. Broxtermann, D. Lell, and T. Fiedler. 2018. Effects of Particle Size on the Microstructure and Mechanical Properties of Expanded Glass-metal Syntactic Foams. Materials Science and Engineering: A. 728. Doi: 10.1016/j.msea.2018.04.103.

K. T. Akhil, S. Arul, and R. Sellamuthu. 2014. The Effect of Heat Treatment and Aging Process on Microstructure and Mechanical Properties of a356 Aluminium Alloy Sections in Casting. Procedia Engineering. 1676-1682. Doi: 10.1016/j.proeng.2014.12.318.

M. Tiryakioglu. 2006. The Effect of Solution Treatment and Artificial Aging on the Work Hardening Characteristics of a Cast Al–7%Si–0.6%Mg Alloy. Material Science and Engineering. 427: 154-159.

J. Peng, X. Tang, J. He, and D. Xu. 2011. Effect of Heat Treatment on Microstructure and Tensile Properties of A356 Alloys. Transactions of Nonferrous Metals Society of China. 21(9): 1950-1956. Doi: 10.1016/S1003-6326(11)60955-2.

D. A. Lados, D. Apelian, and L. Wang. 2011. Aging Effects on Heat Treatment Response and Mechanical Properties of Al-(1 to 13 pct) Si-Mg Cast Alloys. Metallurgical and Materials Transactions B. 42(1): 181-188. Doi: 10.1007/s11663-010-9438-5.

G. Liu, J. Gao, C. Che, Z. Lu, W. Yi, and L. Zhang. 2020. Optimization of Casting Means and Heat Treatment Routines for Improving Mechanical and Corrosion Resistance Properties of A356-0.54Sc Casting Alloy. Mater Today Commun. 24: 101227. Doi: 10.1016/j.mtcomm.2020.101227.

K. Al-Sahlani, E. Kisi, and T. Fiedler. 2019. Impact of Particle Strength and Matrix Ductility on the Deformation Mechanism of Metallic Syntactic Foam. J Alloys Compd. 786. Doi: 10.1016/j.jallcom.2019.01.283.

L. BoChao, P. YoungKoo, and D. HongSheng. 2011. Effects of Rheocasting and Heat Treatment on Microstructure and Mechanical Properties of A356 Alloy. Materials Science and Engineering: A. 528(3): 986-995. Doi: 10.1016/j.msea.2010.09.059.

M. Taherishargh, I. V. Belova, G. E. Murch, and T. Fiedler. 2014. Low-density Expanded Perlite–aluminium Syntactic Foam. Materials Science and Engineering: A. 604: 127-134. Doi: 10.1016/j.msea.2014.03.003.

ISO standard. 2011. Compression Test for Porous and Cellular Metals. Mechanical Testing of Metals. 13314. Switzerland

M. Su, H. Wang, H. Hao, and T. Fiedler. 2020. Compressive Properties of Expanded Glass and Alumina Hollow Spheres Hybrid Reinforced Aluminum Matrix Syntactic Foams. J Alloys Compd. 821: 153233. Doi: 10.1016/j.jallcom.2019.153233.

G. Nicoletto, R. Konečná, and S. Fintova. 2012. Characterization of Microshrinkage Casting Defects of Al–Si Alloys by X-ray Computed Tomography and Metallography. Int J Fatigue. 41: 39-46. Doi: 10.1016/j.ijfatigue.2012.01.006.

K. Lee, Y. N. Kwon, and S. Lee. 2008. Effects of Eutectic Silicon Particles On Tensile Properties and Fracture Toughness of A356 Aluminum Alloys Fabricated by Low-Pressure-casting, Casting-forging, and Squeeze-casting Processes. J Alloys Compd. 461(1-2): 532–541. Doi: 10.1016/j.jallcom.2007.07.038.

M. O. Shabani, A. Mazahery, A. Bahmani, P. Davami, And N. Varahram. 2011. Solidification of A356 Al Alloy: Experimental Study and Modeling. Metallic Materials. 49(04): 253-258. Doi: 10.4149/km_2011_4_253.

A. Daoud, M. Abouelkhair, M. Abdelaziz, And P. Rohatgi. 2007. Fabrication, Microstructure and Compressive Behavior of ZC63 Mg–microballoon Foam Composites. Compos Sci Technol. 67(9): 1842-1853. Doi: 10.1016/j.compscitech.2006.10.023.

Y. Harada, S. Tamura, and S. Kumai. 2011. Effects of High-Temperature Solutionizing on Microstructure and Tear Toughness of A356 Cast Aluminum Alloy. Mater Trans. 52(5): 848-855. Doi: 10.2320/matertrans.L-MZ201105.

M. Zhu, Z. Jian, G. Yang, and Y. Zhou. 2012. Effects of T6 Heat Treatment on the Microstructure, Tensile Properties, and Fracture Behavior of the Modified A356 Alloys. Materials & Design (1980-2015). 36: 243-249. Doi: 10.1016/j.matdes.2011.11.018.

J. A. Sekhar and R. Trivedi. 1991. Solidification Microstructure Evolution in the Presence of Inert Particles. Materials Science and Engineering: A. 147(1): 9-21. Doi: 10.1016/0921-5093(91)90800-3.

S. Broxtermann, M. Taherishargh, I. V. Belova, G. E. Murch, and T. Fiedler. 2017. On the Compressive Behaviour of High Porosity Expanded Perlite-Metal Syntactic Foam (P-MSF). J Alloys Compd. 691: 690-697. Doi: 10.1016/j.jallcom.2016.08.284.

M. Taherishargh, I. V. Belova, G. E. Murch, and T. Fiedler. 2017. The Effect of Particle Shape on Mechanical Properties of Perlite/Metal Syntactic Foam. J Alloys Compd. 693: 55-60. Doi: 10.1016/j.jallcom.2016.09.168.

H. Azimi, S. Nourouzi, and R. Jamaati. 2021. Effects of Ti Particles and T6 Heat Treatment on the Microstructure and Mechanical Properties of A356 Alloy Fabricated By Compocasting. Materials Science and Engineering: A. 818: 141443. Doi: 10.1016/j.msea.2021.141443.

Ç. Bolat, G. Bilge, and A. Gökşenli. 2021. An Investigation on the Effect of Heat Treatment on the Compression Behavior of Aluminum Matrix Syntactic Foam Fabricated by Sandwich Infiltration Casting. Materials Research. 24(2). Doi: 10.1590/1980-5373-mr-2020-0381.

L. Pan et al. 2018. Zn-matrix Syntactic Foams: Effect of Heat Treatment on Microstructure and Compressive Properties. Materials Science and Engineering: A. 731: 413-422. Doi: 10.1016/j.msea.2018.06.072.

X. Xia, W. Zhao, X. Feng, H. Feng, and X. Zhang. 2013. Effect of Homogenizing Heat Treatment on the Compressive Properties of Closed-cell Mg Alloy Foams. Mater Des. 49: 19-24. Doi: 10.1016/j.matdes.2013.01.064.

D. K. Balch, J. G. O’Dwyer, G. R. Davis, C. M. Cady, G. T. Gray, and D. C. Dunand. 2005. Plasticity and Damage in Aluminum Syntactic Foams Deformed under Dynamic and Quasi-Static Conditions. Materials Science and Engineering: A. 391(1-2): 408-417. Doi: 10.1016/j.msea.2004.09.012.

Published

2024-11-11

Issue

Section

Science and Engineering

How to Cite

THE EFFECT OF HEAT-TREATMENT ON THE MECHANICAL PROPERTIES OF EXPANDED GLASS PARTICLE/A356 SYNTACTIC FOAM. (2024). Jurnal Teknologi (Sciences & Engineering), 87(1). https://doi.org/10.11113/jurnalteknologi.v87.22406