PERFORMANCE EVALUATION OF NATURAL AND FORCED CONVECTION IN SOLAR DRYERS FOR MULLET FISH

Authors

  • Halim Ghafar Mechanical Engineering Studies, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Penang, Malaysia
  • Hamid Yusoff Mechanical Engineering Studies, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Penang, Malaysia
  • Sh Mohd Firdaus Sh Abdul Nasir Mechanical Engineering Studies, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Penang, Malaysia
  • Kay Dora Abdul Ghani Civil Engineering Studies, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Penang, Malaysia
  • Mohd Azmi Ismail chool of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22448

Keywords:

Solar Dryer, force convection, natural convection, drying rate, mullet fish, IoT weighing system

Abstract

Ombak Damai Trading, a Malaysian company specialising in dried mullet fish, needed to dry the fish faster to meet growing demand. They reduced the drying time from 1-2 days to 3-4 hours using a solar dryer. The dryer was equipped with an IoT (Internet of things) weighing system for precise monitoring and data collection. Two inlet fans were added for forced convection drying. Measurements of weight, temperature, and humidity were taken for ten days. The forced convection system was found to be 85.78% effective, compared to 59.36% for natural convection. Moisture analysis revealed that the forced convection system removed more moisture, with a maximum percentage of 36% compared to 22% for natural convection. Forced convection also had a higher drying rate of 60.17 g/hour compared to 37.83 g/hour for natural convection. These findings can help seafood businesses optimise the drying process and achieve target moisture levels. Further studies are recommended to examine the forced convection system's commercial scalability, as well as the effects of drying on nutritional content and sensory qualities.

 

References

Fayaz, H., S. Afghan Khan, C. Ahamed Saleel, S. Shaik, A. Abdu Yusuf, I. Veza, I. Md Rizwanul Fattah, N. Fazita Mohammad Rawi, M.A. Muhammad Rizal, and I. M. Alarifi. 2022. Developments in Nanoparticles Enhanced Biofuels and Solar Energy in Malaysian Perspective: A Review of State of the Art. Journal of Nanomaterials. 2022(1): 8091576.

Doi: https://doi.org/10.1155/2022/8091576.

Abdullah, W., C. Jun Wei, E. Min Ci, M. Ling Teck Seng, M. Abd Hakim Mohamad, and Z. Noranai. 2022. Design and Performance Evaluation of Hybrid Photovoltaic Thermal Solar Dehydrator. Journal of Advanced Research in Applied Sciences and Engineering Technology. 8(2): 181-189.

Doi: https://doi.org/10.37934/araset.28.2.181189.

Maryam, H., K. Okajima, and K. Suzuki. 2017. Tapping the Potential of Large Scale Solar PV System in Sabah: The Feasibility Analysis. Energy and Power Engineering. 9(2): 108-118.

Doi: https://doi.org/10.4236/epe.2017.92009.

Mohamed, A. E., M. Mohamed Azam, and A. O. Alghannam. 2018. Energy Analysis of Hybrid Solar Tunnel Dryer with PV System and Solar Collector for Drying Mint (MenthaViridis). Journal of Cleaner Production. 181: 352-364.

Doi: https://doi.org/10.1016/j.jclepro.2018.01.229.

Amir, H. A., G. Najafi, S. Gorjian, R. Loni, E. Bellos, and T. Yusaf. 2019. Performance Assessment of a Solar Dryer System Using Small Parabolic Dish and Alumina/Oil Nanofluid: Simulation and Experimental Study. Energies. 12(24): 4747.

Doi: https://doi.org/10.3390/en12244747.

Jyrki, R. and E. Tsupari. 2020. Feasibility of Solar-Enhanced Drying of Woody Biomass. BioEnergy Research. 13(1): 210-221.

Doi: https://doi.org/10.1007/s12155-019-10048-z,

Omolulu, E. F., O. A. Aregbesola, and M. O. Faborode. 2019. Development of an Energy Storage Chamber to Enhance Solar Drying of Grain at Night. Journal of Engineering Research and Reports. 3(3): 1-10.

Doi: https://doi.org/10.9734/jerr/2018/v3i316876.

Xin, G., K. Li, P. Zhou, J. Liang, J. Gu, Y. Xue, M. Guo, T. Sun, and J. Jia. 2022. Insight into the Enhanced Removal of Water from Coal Slime via Solar Drying Technology: Dewatering Performance, Solar Thermal Efficiency, and Economic Analysis. ACS Omega. 7(8): 6710-6720.

Doi: https://doi.org/10.1021/acsomega.1c06197.

Panli, W., D. Mohammed, P. Zhou, Z. Lou, P. Qian, and Q. Zhou. 2019. Roof Solar Drying Processes for Sewage Sludge within Sandwich-like Chamber Bed. Renewable Energy. 136: 1071-1081.

Doi: https://doi.org/10.1016/j.renene.2018.09.081.

Wellington, S. R., A. S. Silva, Á. G. F. da Silva, A. Marinho do Nascimento, M. A. R. Limão, F. Bezerra da Costa, P. Augusto de Souza, A. J. de M. Queiroz, O. Soares da Silva, P. O. Galdino, R. M. Feitosa de Figueirêdo, S. M. Silva, and F. L. Finger. 2021. Handmade Solar Dryer: An Environmentally and Economically Viable Alternative for Small and Medium Producers. Scientific Reports. 11.

Doi: https://doi.org/10.1038/s41598-021-94353-8.

Mukul, S., D. Singh, P. K. Mishra, D. Singh, and B. S. Giri. 2023. Computational Study of the Performance of a Solar Dryer for Improvement in the Shelf Life of the Food Materials. Research Square.

Doi: https://doi.org/10.21203/rs.3.rs-3017780/v1.

Macmanus, C. N., M. Ibeh, I. Ekop, U.C. Abada, P. Etim, L. Bennamoun, F. Abam, M. Simo-Tagne, and A. Gupta. 2022. Analysis of the Heat Transfer Coefficient, Thermal Effusivity and Mathematical Modelling of Drying Kinetics of a Partitioned Single Pass Low-Cost Solar Drying of Cocoyam Chips with Economic Assessments. Energies. 15(12): 4547.

Doi: https://doi.org/10.3390/en15124457.

James, M., P. Tumutegyereize, and I. Kabenge. 2020. Performance Evaluation of Cassava Drying Technologies: A Case Study from Uganda. Moj Food Processing & Technology. 8(2): 46-51.

Doi: https://doi.org/10.15406/mojfpt.2020.07.00241.

Norerama, D. P. and M. K. Wan Ibrahim. 2022. A Review of the Significance Effect of External Factors of the Solar Dyer Design to Dried Foods Product Quality. Journal of Engineering Design and Technology. 20(6): 1765-1786.

Doi: https://doi.org/10.1108/JEDT-01-2021-0033.

Yahia Ibrahim, S., M. H. Aly, A. F. Nassar, and E. A. Mohamed. 2015. Solar Drying of Whole Mint Plant under Natural and Forced Convection. Journal of Advanced Research. 6(2): 171-178.

Doi: https://doi.org/10.1016/j.jare.2013.12.001.

Anupam, T. 2016. A Review on Solar Drying of Agricultural Produce. Journal of Food Processing & Technology. 7(9): 1000623.

Doi: https://doi.org/10.4172/2157-7110.1000623.

Vigneshwaran, S. and E. Natarajan. 2006. Experimental Investigation of Forced Convection and Desiccant Integrated Solar Dryer. Renewable Energy. 31(8): 1239-1251.

Doi: https://doi.org/10.1016/j.renene.2005.05.019.

Fergyanto, E. G., A. S. Budiman, B. Pardamean, E. Djuana, S. Romeli, N. Hananda, C. Harito, D. P. Aji, D. N. Putri, and Stevanus. 2022. Design and Energy Assessment of a New Hybrid Solar Drying Dome - Enabling Low-Cost, Independent and Smart Solar Dryer for Indonesia Agriculture 4.0. IOP Conference Series Earth and Environmental Science. 998: 012052.

Doi: https://doi.org/10.1088/1755-1315/998/1/012052.

Booker, O., D. Nyaanga, and J. Kiplagat. 2019. Simulation of Grain Quantity, Fan and Solar Collector Sizes for an Experimental Forced Convection Grain Dryer. Agriculture and Food Sciences Research. 6(1): 98-108.

Doi: https://doi.org/10.20448/journal.512.2019.61.98.108.

Tonui., K. S., E. B. K. Mutai, D. A. Mutuli, D. O. Mbuge, and K. V. Too. 2014. Design and Evaluation of Solar Grain Dryer with a Back-Up Heater. Research Journal of Applied Sciences Engineering and Technology. 7(15): 3036-3043.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Davidson, S. J., J. J. Gunasekar, and K. Prasanthkumar. 2020. Drying Performance of Beans Using Natural Convective Step Type Solar Dryer. Current Journal of Applied Science and Technology. 38(6): 1-7.

Doi: https://doi.org/10.9734/cjast/2019/v38i630490.

Chhotelal, P., and T. Sheorey. 2023. Exploring the Efficacy of Natural Convection in a Cabinet Type Solar Dryer for Drying Gooseberries: An Experimental Analysis. Journal of Agriculture and Food Research. 14: 100684.

Doi: https://doi.org/10.1016/j.jafr.2023.100684.

Adnan, R., J. W. Lee, and H. W. Lee. 2018. Development of A Model to Calculate the Overall Heat Transfer Coefficient of Greenhouse Covers. Spanish Journal of Agricultural Research. 15(4): e0208.

Doi: https://doi.org/10.5424/sjar/2017154-10777.

Donald, P. and L.E. Sissom. 1998. Schaum's Outline of Heat Transfer. McGraw-Hill Professional.

Ayyappan, S., K. Mayilsamy, and V. V. Sreenarayanan. 2016. Performance Improvement Studies in a Solar Greenhouse Drier using Sensible Heat Storage Materials. Heat and Mass Transfer. 52(3): 459-467.

Doi: https://doi.org/10.1007/s00231-015-1568-5.

Selvaraj, V., T. V. Arjunan, and A, Kumar. 2020. Exergo-environmental Analysis of An Indirect Forced Convection Solar Dryer for Drying Bitter Gourd Slices. Renewable Energy. 146: 2210-2223.

Doi: https://doi.org/10.1016/j.renene.2019.08.066.

Mugi, V. R., M. C. Gilago, and V.P. Chandramohan. 2022. Energy and Exergy Investigation of Indirect Solar Dryer Under Natural and Forced Convection while Drying Muskmelon Slices. Energy Nexus. 8: 100153.

Doi: https://doi.org/10.1016/j.nexus.2022.100153.

Li, H., Y. He, Y. Hu, and X. Wang. 2018. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation. ACS Appl. Mater. Interfaces. 10(11): 9362-9368.

Doi: https://doi.org/10.1021/acsami.7b18071.

Solar Resource Maps of Malaysia. Retrieved March 1, 2024 from https://solargis.com/maps-and-gis-data/download/malaysia.

This is How Long the Sun Shines in Malaysia! Up to 12:20 Hours of Daylight a Day. Worlddata.info. Retrieved March 1, 2024 from https://www.worlddata.info/asia/malaysia/sunset.php.

Yusril, F., and K. Kartika. 2023. Moringa Leaf Dryer Oven System Using Fuzzy Logic Method. International Journal of Engineering Science and Information Technology. 3(1): 15-21.

Doi: https://doi.org/10.52088/ijesty.v3i1.405.

Ronoh, E. K., C. L. Kanali, J. T. Mailutha, and D. Shitanda. 2010. Thin Layer Drying Kinetics of Amaranth (Amaranthus Cruentus) Grains in a Natural Convection Solar Tent Dryer. African Journal of Food Agriculture Nutrition and Development. 10(3): 2218-2233.

Doi: https://doi.org/10.4314/ajfand.v10i3.54080.

Afriyie, J. K., M. A. A. Nazha, H. Rajakaruna, and F. K. Forson. 2009. Experimental Investigations of a Chimney-dependent Solar Crop Dryer. Renewable Energy. 34(1): 217-222.

Doi: https://doi.org/10.1016/j.renene.2008.04.010.

Bala, B. K., M. A. Ashraf, M. A. Uddin, And S. Janjai. 2005. Experimental and Neural Network Prediction of the Performance of a Solar Tunnel Drier for Drying Jackfruit Bulbs and Leather. Journal of Food Process Engineering. 28: 552-566.

Doi: https://doi.org/10.1111/j.1745-4530.2005.00042.x.

Published

2024-11-11

Issue

Section

Science and Engineering

How to Cite

PERFORMANCE EVALUATION OF NATURAL AND FORCED CONVECTION IN SOLAR DRYERS FOR MULLET FISH. (2024). Jurnal Teknologi (Sciences & Engineering), 87(1). https://doi.org/10.11113/jurnalteknologi.v87.22448