DESIGN OF A 24.5 GHZ CMOS LOW NOISE AMPLIFIER USING 0.13-µM TECHNOLOGY FOR 6G WIRELESS APPLICATIONS

Authors

  • Sohiful Anuar Zainol Murad ᵃFaculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau, 02600, Perlis, Malaysia ᵇCentre of Excellence for Micro System Technology (MiCTEC), Universiti Malaysia Perlis, Arau, 02600, Perlis, Malaysia
  • Asrulnizam Abd Manaf Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
  • Nuha A. Rhaffor Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
  • Ruhaifi Abdullah Zawawi Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22520

Keywords:

Low noise amplifier, CMOS, 6G, RF front-end, wireless communication

Abstract

The need for high-performance circuit designs is growing as wireless communication technologies continue to advance and support newer generations of wireless applications. Much emphasis has been focused on the possibility of the 24 GHz frequency band in next-generation wireless networks, including 5G and beyond. Designing a low noise amplifier (LNA) operating at 24 GHz presents several challenges. The primary concerns include achieving high gain, low power consumption, low noise figure, and while maintaining good linearity and stability. This paper presents the design, simulation, and layout of a CMOS LNA optimized for operation at 24.5 GHz frequency, targeting 6G and beyond wireless communication applications. The proposed LNA employs three stages with a cascode topology at the first stage and follow by a common source stage at second and third stage.  The three stages help to achieve high gain, and the source degeneration inductor at the first stage helps to improve linearity. Extensive simulations were conducted using a 0.13-µm CMOS technology, demonstrating a peak gain of 21 dB and a noise figure of 5.6 dB at 24.5 GHz. The LNA also exhibits good linearity and stability over a wide bandwidth. The performance metrics were validated through simulation and comparison, showcasing the feasibility of the designed LNA for 6G applications. This work contributes to the advancement of CMOS-based radio frequency (RF) front-end designs for next-generation wireless communication systems.

References

Giordani, M., Polese, M., Mezzavilla, M., Rangan, S. and Zorzi, M. 2020. Toward 6G Networks: Use Cases and Technologies. IEEE Communications Magazine. 58: 55-61.

Doi: http://dx.doi.org/10.1109/MCOM.001.1900411

Banafaa, M., Shayea, I., Din, J., Azmi, M. H., Alashbi, A., Daradkeh, Y. I. and Alhammadi, A. 2023. 6G Mobile Communication Technology: Requirements, Targets, Applications, Challenges, Advantages, and Opportunities. Alexandria Engineering Journal. 64: 245-274.

Doi: http://dx.doi.org/10.1016/j.aej.2022.08.017.

Saad, W., Bennis, M. and Chen, M., 2019. A Vion of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Network. 34: 134-142.

Doi: http://dx.doi.org/10.1109/MNET.001.1900287.

Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L. and Popovski, P. 2014. Five Disruptive Technology Directions for 5G. IEEE Communications Magazine. 52: 74-80.

Doi: http://dx.doi.org/10.1109/MCOM.2014.6736746.

Heydari, P. 2021. April. Transceivers for 6G Wireless Communications: Challenges and Design Solutions. 2021 IEEE Custom Integrated Circuits Conference (CICC) (pp. 1-8). IEEE.

Doi: http://dx.doi.org/10.1109/CICC51472.2021.9431450.

Rodwell, M. W., Ahmed, A. S., Seo, M., Soylu, U., Alizadeh, A. and Hosseinzadeh, N. 2022. IC and Array Technologies for 100-300GHz Wireless. 2022 IEEE Custom Integrated Circuits Conference (CICC). (pp. 01-05). IEEE.

Doi: http://dx.doi.org/10.1109/CICC53496.2022.9772844.

Hong, W., Jiang, Z. H., Yu, C., Hou, D., Wang, H., Guo, C., Hu, Y., Kuai, L., Yu, Y., Jiang, Z. and Chen, Z. 2021. The Role of Millimeter-wave Technologies in 5G/6G Wireless Communications. IEEE Journal of Microwaves. 1: 101-122.

Doi: http://dx.doi.org/10.1109/JMW.2020.3035541.

Fu, J., Bardeh, M. G., Paramesh, J. and Entesari, K. 2022. A Millimeter-Wave Concurrent LNA in 22-nm CMOS FDSOI for 5G Applications. IEEE Transactions on Microwave Theory and Techniques. 71: 1031-1043.

Doi: http://dx.doi.org/10.1109/TMTT.2022.3219869.

Xu, X., Schumann, S., Ferschischi, A., Finger, W., Carta, C. and Ellinger, F. 2021. A 28 GHz and 38 GHz High-gain Dual-band LNA for 5G Wireless Systems in 22 nm FD-SOI CMOS. 2020 15th European Microwave Integrated Circuits Conference (EuMIC). (pp. 77-80). IEEE.

Azizan, A. and Murad, S. A. Z. 2016. A 0.3 mW 2.4 GHz Low Power Low Noise Amplifier Using Forward Body Bias Technique for Wireless Sensor Ard Body Bias Technique for Wireless Sensor Network. Jurnal Teknologi. 78(1).

Doi: http://dx.doi.org/10.11113/jt.v78.4172.

Roobert, A. A., Rani, D. G. N., Divya, M. and Rajaram, S. 2018. February. Design of CMOS based LNA for 5G Wireless Applications. Proceedings of the 6th International Conference on Communications and Broadband Networking. (pp. 43-47).

Doi: http://dx.doi.org/10.1145/3193092.3193095

Chang, J. F. and Lin, Y. S. 2021. A 13.7-mW 21–29-GHz CMOS LNA with 21.6-dB gain and 2.74-dB NF for 28-GHz 5G Systems. IEEE Microwave and Wireless Components Letters. 32: 137-140.

DOI: http://dx.doi.org/10.1109/LMWC.2021.3121020.

Choi, H. W., Choi, S. and Kim, C. Y. 2020. A CMOS Band-pass Low Noise Amplifier with Excellent Gain Flatness for mm-wave 5G Communications. 2020 IEEE/MTT-S International Microwave Symposium (IMS). (pp. 329-332). IEEE.

Doi: http://dx.doi.org/10.1109/IMS30576.2020.9224097.

Roobert, A. A. and Rani, D. G. N. 2021. Design and Analysis of a Sleep and Wake-up CMOS Low Noise Amplifier for 5G Applications. Telecommunication Systems. 76: 461-470.

Doi: http://dx.doi.org/10.1007/s11235-020-00729-y.

R. Zhang, Y. Huang, and W. Ng. 2020. CMOS Low Noise Amplifiers for 5G and Beyond: Challenges and Opportunities. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 10: 455-468.

Sathya, R. and Ambulker, S. 2023. Analysis of Three-Stage LNA Architecture for CMOS RF Front End. Journal of Physics: Conference Series. 2466(1): 012017. IOP Publishing.

Doi: http://dx.doi.org/10.1088/1742-6596/2466/1/012017.

Mugadhanam, R. and Uppara, E. 2022. Design and Analysis of Improved 3-Stage LNA Architecture for CMOS RF Front End Receiver Systems. International Journal of Intelligent Engineering & Systems. 15.

Zhang, H., Fan, X. and Sinencio, E. S. 2009. A Low-power, Linearized, Ultra-wideband LNA Design Technique. IEEE Journal of Solid-State Circuits. 44: 320-330.

Doi: http://dx.doi.org/10.1109/JSSC.2008.2011033.

Ajabi, S. and Kaabi, H. 2022. A 24GHz High Dynamic Range Low-Noise Amplifier Design Optimization Methodology and Circuit Configuration. Iranian Journal of Science and Technology. Transactions of Electrical Engineering. 46: 225-234.

DOI: http://dx.doi.org/10.1007/s40998-021-00450-9.

Xu, X., Li, S., Szilagyi, L., Testa, P.V., Carta, C. and Ellinger, F. 2020. A 28 GHz and 38 GHz dual-band LNA using Gain Peaking Technique for 5G Wireless Systems in 22 nm FD-SOI CMOS. 2020 IEEE Asia-Pacific Microwave Conference (APMC). (pp. 98-100). IEEE.

DOI: http://dx.doi.org/10.1109/APMC47863.2020.9331333.

Roobert, A. A., Arunodhayamary, P. S., Rani, D. G. N., Venkatesh, M. and Julus, L. J. 2022. Design and Analysis of 28 GHz CMOS Low Power LNA with 6.4 dB Gain Variability for 5G Applications. Transactions on Emerging Telecommunications Technologies. 33: p.e4486.

DOI: http://dx.doi.org/10.1002/ett.4486.

Liang, C., Tang, B., Zhao, Y., Xie, Y. and Geng, L. 2023. High Gain and Low Power K-Band LNA With Reversed Current-Reuse Topology. IEEE Microwave and Wireless Technology Letters.

Doi: http://dx.doi.org/10.1109/LMWT.2023.3317781.

Lammert, V., Weigel, R. and Issakov, V. 2020, May. A Highly Linear Low-Power 28 GHz LNA in 45nm SOI-CMOS using the Modified Derivative Superposition Method for IM3-Cancellation. 2020 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS). (pp. 1-3). IEEE.

DOI: http://dx.doi.org/10.1109/WMCS49442.2020.9172390.

Published

2024-11-11

Issue

Section

Science and Engineering

How to Cite

DESIGN OF A 24.5 GHZ CMOS LOW NOISE AMPLIFIER USING 0.13-µM TECHNOLOGY FOR 6G WIRELESS APPLICATIONS. (2024). Jurnal Teknologi (Sciences & Engineering), 87(1). https://doi.org/10.11113/jurnalteknologi.v87.22520