NUTRITIONAL CONTENT AND CHEMICAL ANALYSIS OF SEAWEED RESIDUES EXTRACTED THROUGH VARIOUS CARRAGEENAN PROCESSING METHODS AS POTENTIAL PLANT BIOSTIMULANT
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.22577Keywords:
Kappaphycus alvarezii, carrageenan extraction, seaweed waste, nutritional content, chemical analysisAbstract
The rising interest in plant biostimulants as eco-friendly alternatives to chemical fertilizers has led to significant attention toward Kappaphycus alvarezii. This seaweed species is rich in nutrients, phytohormones, and bioactive compounds, making it a promising candidate for plant biostimulant. However, the circumstances appear to be different when considering seaweed residues. In this study, the nutritional and biochemical compounds of the seaweed residues which generated through various carrageenan extraction methods such as physical, biological and chemical treatments on Kappaphycus alvarezii were determined. Proximate analysis conducted on all residues using the AOAC method revealed moisture content at 99% (w/w), protein levels of less than 0.1% (w/w), fat content between 2.1% and 3.1% (w/w), and ash levels ranging from 0.01% to 0..1% (w/w). No detectable levels of total carbohydrates were found in any of the residues. Furthermore, nutritional analysis via inductively coupled plasma–optical emission spectroscopy (ICP-OES) identified macronutrient concentrations in the residues, including nitrogen (<0.1% (w/w)), phosphorus (675–840 mg/kg), potassium (1325 – 1470 mg/kg), magnesium (52.5 – 85 mg/kg), calcium (310 – 625 mg/kg) and sodium (525 – 745 mg/kg), as well as trace micronutrients (iron, manganese, boron, and molybdenum) at specific concentrations. Remarkably, the DPPH assay showed that all the residues exhibited antioxidant activities, ranging from 47% until 56%. This study highlights the potential of seaweed residues as plant biostimulants, offering a sustainable addition to agricultural practices while contributing to effective zero-waste management in the seaweed industry.
References
Zhang, L., Liao, W., Huang, Y., Wen, Y., Chu, Y., & Zhao, C. 2022. Global Seaweed Farming and Processing in the Past 20 Years. Food Production, Processing and Nutrition. 4(1). https://doi.org/10.1186/s43014-022-00103-2.
Zhang, R., Yuen, A. K. L., de Nys, R., Masters, A. F., & Maschmeyer, T. 2020. Step by Step Extraction of Bio-actives from the Brown Seaweeds, Carpophyllum flexuosum, Carpophyllum plumosum, Ecklonia radiata and Undaria pinnatifida. Algal Research. 52(June): 102092. https://doi.org/10.1016/j.algal.2020.102092.
Joshi, A., Desai, A. Y., & Mulye, V. 2015. Seaweed Resources and Utilization: An Overview. Biotech. Expres. 2(22): 46–50.
Marx, U. C., Roles, J., & Hankamer, B. 2021. Sargassum blooms in the Atlantic Ocean–From a Burden to an Asset. Algal Research. 54: 102188. https://doi.org/10.1016/J.ALGAL.2021.102188.
Yun, J. H., Archer, S. D., & Price, N. N. 2022. Valorization of Waste Materials from Seaweed Industry: An Industry Survey Based Biorefinery Approach. Reviews in Aquaculture. 1–8. https://doi.org/10.1111/raq.12748.
Dang, B. T., Ramaraj, R., Huynh, K. P. H., Le, M. V., Tomoaki, I., Pham, T. T., Hoang Luan, V., Thi Le Na, P., & Tran, D. P. H. 2023. Current Application of Seaweed Waste for Composting and Biochar: A Review. Bioresource Technology. 375(March): 128830. https://doi.org/10.1016/j.biortech.2023.128830.
du Jardin, P. 2015. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Scientia Horticulturae. 196: 3–14. https://doi.org/10.1016/j.scienta.2015.09.021.
Di Filippo-Herrera, D. A., Muñoz-Ochoa, M., Hernández-Herrera, R. M., & Hernández-Carmona, G. 2019. Biostimulant Activity of Individual and Blended Seaweed Extracts on the Germination and Growth of the Mung Bean. Journal of Applied Phycology. 31(3): 2025–2037. https://doi.org/10.1007/s10811-018-1680-2.
Pramanick, B., Brahmachari, K., Ghosh, A., & Zodape, & S. T. 2016. Effect of Seaweed Saps Derived from Two Marine Algae Kappaphycus and Gracilaria on Growth and Yield Improvement of Blackgram. Indian Journal of Geo-Marine Sciences. 45(6): 789–794.
Chitra, G., & Sreeja, P. S. 2013. A Comparative Study on the Effect of Seaweed Liquid Fertilizers on the Growth and Yield of Vigna radiata (L.). Nature Environment and Pollution Technology. 12(2): 359–362.
Chandini, Kumar, R., Kumar, R., & Prakash, O. 2019. The Impact of Chemical Fertilizers on Our Environment and Ecosystem. Research Trends in Environmental Sciences. 69–86.
Dehkordi, R. A., Roghani, S. R., Mafakheri, S., & Asghari, B. 2021. Effect of Biostimulants on Morpho-physiological Traits of Various Ecotypes of Fenugreek (Trigonella foenum-graecum L.) under Water Deficit Stress. Scientia Horticulturae, 283(January 2020): 110077. https://doi.org/10.1016/j.scienta.2021.110077.
Pudoli, I., Prasetyati, S. B., & Fadhlullah, M. 2024. Valorization of Seaweed Gracilaria sp. Biomass Waste into Liquid Organic Fertilizer: Assessment on Cayenne Pepper Capsicum frutescens L. Growth. AIP Conference Proceedings. 3080(1). https://doi.org/10.1063/5.0198556.
Yudiati, E., Djunaedi, A., Shinta, D., Adziana, K., Nisa, A. A., & Alghazeer, R. 2021. Improving Production, Chlorophyll a and Carotenoids Contents of Gracilaria sp. with Liquid Organic Fertilizer from Alginate Waste. ILMU KELAUTAN: Indonesian Journal of Marine Sciences March. 26(1): 1–6. https://doi.org/10.14710/ik.ijms.26.
Mensah, S. T., Ochekwu, E. B., Mgbedo, U. G., & Uzoma, M. C. 2020. Effect of N : P : K (15 : 15 : 15) on the Growth of Punica granatum L. Seedlings. International Journal of Agronomy. 2020: 1–7. https://doi.org/10.1155/2020/4653657.
Zewdie, I., & Reta, Y. 2021. Review on the Role of Soil Macronutrient (NPK) on the Improvement and Yield and Quality of Agronomic Crops. Official Publication of Direct Research Journal of Agriculture and Food Science. 9(1): 7–11. https://doi.org/10.26765/DRJAFS23284767.
Yusuf, R., & Syakur, A. 2017. Waste Application of Seaweed (Eucheuma Cottonii) on Plant Growth and Results of Mustard (Brassica Juncea L .). Agroland : The Agriculture Science Journal. 4(2): 83–88.
Gibilisco, P. E., Lancelotti, J. L., Negrin, V. L., & Idaszkin, Y. L. 2020. Composting of Seaweed Waste: Evaluation on the Growth of Sarcocornia perennis. Journal of Environmental Management. 274(August): 111193. https://doi.org/10.1016/j.jenvman.2020.111193.
Ilias, M. A., Ismail, A., & Othman, R. 2017. Analysis of Carrageenan Yield and Gel Strength of Kappaphycus Species in Semporna Sabah. Journal of Tropical Plant Physiology. 9(1): 14–23.
Álvarez-Viñas, M., Rivas, S., Torres, M. D., & Domínguez, H. 2023. Microwave-Assisted Extraction of Carrageenan from Sarcopeltis skottsbergii. Marine Drugs. 21(2). https://doi.org/10.3390/md21020083.
Vázquez-Delfín, E., Robledo, D., & Freile-Pelegrín, Y. 2014. Microwave-assisted Extraction of the Carrageenan from Hypnea musciformis (Cystocloniaceae, Rhodophyta). Journal of Applied Phycology. 26(2): 901–907. https://doi.org/10.1007/s10811-013-0090-8.
Ummat, V., Sivagnanam, S. P., Rajauria, G., O’Donnell, C., & Tiwari, B. K. 2021. Advances in Pre-treatment Techniques and Green Extraction Technologies for Bioactives from Seaweeds. Trends in Food Science and Technology, 110(December 2020): 90–106. https://doi.org/10.1016/j.tifs.2021.01.018.
Matos, G. S., Pereira, S. G., Genisheva, Z. A., Gomes, A. M., Teixeira, J. A., & Rocha, C. M. R. 2021. Advances in Extraction Methods to Recover Added-value Compounds from Seaweeds: Sustainability and Functionality. Foods, 10(3). https://doi.org/10.3390/foods10030516.
Tarman, K., Ain, N. H., Sulistiawati, S., Hardjito, L., & Sadi, U. 2020. Biological Process to Valorise Marine Algae. IOP Conference Series Earth and Environmental Science, 414(1): 012026. https://doi.org/10.1088/1755-1315/414/1/012026.
Varadarajan, S. A., Ramli Nazaruddin, Arbakariya, A., & Mamot, S. 2009. Development of High Yielding Carragenan Extraction Method from Eucheuma Cotonii using cellulase and Aspergillus niger. Prosiding Seminar Kimia Bersama. 461–469.
Tye, Y. Y., Khalil Hps, A., Kok, C. Y., & Saurabh, C. K. 2018. Preparation and Characterization of Modified and Unmodified Carrageenan-based Films. IOP Conference Series: Materials Science and Engineering. 368(1). https://doi.org/10.1088/1757-899X/368/1/012020.
Solorzano-Chavez, E. G., Paz-Cedeno, F. R., Ezequiel de Oliveira, L., Gelli, V. C., Monti, R., Conceição de Oliveira, S., & Masarin, F. 2019. Evaluation of the Kappaphycus alvarezii Growth under Different Environmental Conditions and Efficiency of the Enzymatic Hydrolysis of the Residue Generated in the Carrageenan Processing. Biomass and Bioenergy. 127: 105254. https://doi.org/10.1016/j.biombioe.2019.105254.
Liu, Y., An, D., Xiao, Q., Chen, F., Zhang, Y., Weng, H., & Xiao, A. 2022. A Novel κ-carrageenan Extracting Process with Calcium Hydroxide and Carbon Dioxide. Food Hydrocolloids. 127: 107507. https://doi.org/10.1016/j.foodhyd.2022.107507.
Ponthier, E., Domínguez, H., & Torres, M. D. 2020. The Microwave Assisted Extraction Sway on the Features of Antioxidant Compounds and Gelling Biopolymers from Mastocarpus stellatus. Algal Research. 51: 102081. https://doi.org/10.1016/J.ALGAL.2020.102081.
Fayzi, L., Dayan, M., Cherifi, O., Boufous, E. H., & Cherifi, K. 2020. Biostimulant Effect of Four Moroccan Seaweed Extracts Applied as Seed Treatment and Foliar Spray on Maize. Asian Journal of Plant Sciences. 19(4): 419–428. https://doi.org/10.3923/ajps.2020.419.428.
Xiren, G. K., & Aminah, A. 2017. Proximate Composition and Total Amino Acid Composition of Kappaphycus alvarezii Found in the Waters of Langkawi and Sabah, Malaysia. International Food Research Journal. 24(3). http://mymedr.afpm.org.my/publications/55626.
Soares, C., Švarc-Gajić, J., Oliva-Teles, M. T., Pinto, E., Nastić, N., Savić, S., Almeida, A., & Delerue-Matos, C. 2020. Mineral Composition of Subcritical Water Extracts of Saccorhiza polyschides, a Brown Seaweed used as Fertilizer in the North of Portugal. Journal of Marine Science and Engineering. 8(4): 1–11. https://doi.org/10.3390/JMSE8040244.
Leelavathi, M. S., & Prasad, M. P. 2014. Evaluation of Antioxidant Properties of Marine Seaweed Samples by DPPH Method. International Journal Of Pure & Applied Bioscience. 2(6): 132–137. www.ijpab.com.
Rhein-Knudsen, N., Ale, M. T., Ajalloueian, F., Yu, L., & Meyer, A. S. 2017. Rheological Properties of Agar and Carrageenan from Ghanaian Red Seaweeds. Food Hydrocolloids. 63: 50–58. https://doi.org/10.1016/j.foodhyd.2016.08.023.
Manuhara, G. J., Praseptiangga, D., & Riyanto, R. A. 2016. Extraction and Characterization of Refined K-carrageenan of Red Algae [Kappaphycus Alvarezii (Doty ex P.C. Silva, 1996) Originated from Karimun Jawa Islands. Aquatic Procedia. 7: 106–111. https://doi.org/10.1016/j.aqpro.2016.07.014.
Rupert, R., Rodrigues, K. F., Thien, V. Y., & Yong, W. T. L. 2022. Carrageenan From Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, Structure, Production, and Application. Frontiers in Plant Science. 13(May). https://doi.org/10.3389/fpls.2022.859635.
Pozo, M. B. Del, Gallardo-Guerrero, L., & Gandul-Rojas, B. 2020. Influence of Alkaline Treatment on Structural Modifications of Chlorophyll Pigments in NaOH-treated Table Olives Preserved without Fermentation. Foods. 9(6): 1–17. https://doi.org/10.3390/foods9060701.
Xiao, Q., Wang, X., Zhang, J., Zhang, Y., Chen, J., Chen, F., & Xiao, A. 2021. Pretreatment Techniques and Green Extraction Technologies for Agar from Gracilaria lemaneiformis. Marine Drugs. 19(11): 617. https://doi.org/10.3390/md19110617.
Ngamwonglumlert, L., Devahastin, S., & Chiewchan, N. 2017. Natural Colorants: Pigment Stability and Extraction Yield Enhancement via Utilization of Appropriate Pretreatment and Extraction Methods. Critical Reviews in Food Science and Nutrition. 57(15): 3243–3259. https://doi.org/10.1080/10408398.2015.1109498.
Park, Y. W. 2008. Moisture and Water Activity. Handbook of Processed Meats and Poultry Analysis. (Issue December). https://doi.org/10.1201/9781420045338.ch3.
Masarin, F., Cedeno, F. R. P., Chavez, E. G. S., De Oliveira, L. E., Gelli, V. C., & Monti, R. 2016. Chemical Analysis and Biorefinery of Red Algae Kappaphycus alvarezii for Efficient Production of Glucose from Residue of Carrageenan Extraction Process. Biotechnology for Biofuels. 9(1): 1–12. https://doi.org/10.1186/s13068-016-0535-9.
Mandalka, A., Cavalcanti, M. I. L. G., Harb, T. B., Toyota Fujii, M., Eisner, P., Schweiggert-Weisz, U., & Chow, F. 2022. Nutritional Composition of Beach-Cast Marine Algae from the Brazilian Coast: Added Value for Algal Biomass Considered as Waste. Foods. 11(9). https://doi.org/10.3390/foods11091201.
Bianchi, A., Sanz, V., Domínguez, H., & Torres, M. D. 2022. Valorisation of the Industrial Hybrid Carrageenan Extraction Wastes using Eco-friendly Treatments. Food Hydrocolloids. 122(July 2021): 107070. https://doi.org/10.1016/j.foodhyd.2021.107070.
Hassan, S. M., Ashour, M., Soliman, A. a. F., Hassanien, H. A., Alsanie, W. F., Gaber, A., & Elshobary, M. E. 2021. The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav. Sustainability. 13(8): 4485. https://doi.org/10.3390/su13084485.
Vaghela, P., Das, A. K., Trivedi, K., Anand, K. G. V., Shinde, P., & Ghosh, A. 2022. Characterization and Metabolomics Profiling of Kappaphycus alvarezii Seaweed Extract. Algal Research. 66(January): 102774. https://doi.org/10.1016/j.algal.2022.102774.
Maathuis, F. J. M. 2014. Sodium in Plants: Perception, Signalling, and Regulation of Sodium Fluxes. Journal of Experimental Botany. 65(3): 849–858. https://doi.org/10.1093/jxb/ert326
Ochiai, K., Oba, K., Oda, K., Miyamoto, T., & Matoh, T. 2022. Effects of Improved Sodium Uptake Ability on Grain Yields of Rice Plants Under Low Potassium Supply. Plant Direct. 6(4): 1–10. https://doi.org/10.1002/pld3.387.
Thor, K. 2019. Calcium—nutrient and Messenger. Frontiers in Plant Science. 10(April). https://doi.org/10.3389/fpls.2019.00440.
Senbayram, M., Gransee, A., Wahle, V., & Thiel, H. 2015. Role of Magnesium Fertilisers in Agriculture: Plant-soil Continuum. Crop and Pasture Science. 66(12): 1219–1229. https://doi.org/10.1071/CP15104.
Veazie, P., Pandey, P., Young, S., Ballance, M. S., Hicks, K., & Whipker, B. 2022. Impact of Macronutrient Fertility on Mineral Uptake and Growth of Lactuca sativa ‘Salanova Green’ in a Hydroponic System. Horticulturae. 8(11). https://doi.org/10.3390/horticulturae8111075.
Yadav, A. K., Gurnule, G. G., Gour, N. I., There, U., & Choudhary, V. C. (2022). Micronutrients and Fertilizers for Improving and Maintaining Crop Value: A Review. International Journal of Environment, Agriculture and Biotechnology. 7(1): 125–140. https://doi.org/10.22161/ijeab.
Reynolds, M. P., & Braun, H. J. (2022). Wheat Improvement. Wheat Improvement: Food Security in a Changing Climate (pp. 3–15). https://doi.org/10.1007/978-3-030-90673-3_1.
Hasanuzzaman, M., Parvin, K., Bardhan, K., Nahar, K., Anee, T. I., Masud, A. A. C., & Fotopoulos, V. 2021. Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants Under Abiotic Stress. Cells, 10(10): 1–29. https://doi.org/10.3390/cells10102537.
Rodrigues de Queiroz, A., Hines, C., Brown, J., Sahay, S., Vijayan, J., Stone, J. M., Bickford, N., Wuellner, M., Glowacka, K., Buan, N. R., & Roston, R. L. 2023. The Effects of Exogenously Applied Antioxidants on Plant Growth and Resilience. Phytochemistry Reviews. 22(2). https://doi.org/10.1007/s11101-023-09862-3.
Hidayah, S. N., & Hastuti, A. a. M. B. 2023. Comprehensive Estimation of Measurement Uncertainty in Determination of Antioxidant Activity in Natural Product by 2,2ʹ-Diphenil-1-Picrylhydrazyl (DPPH) Radical Scavenging Assay. Chemical Papers. 77(8): 4579–4587. https://doi.org/10.1007/s11696-023-02808-1.
Diyana, A. F., Abdullah, A., Hisham, Z. a. S., & Chan, K. M. 2015. Antioxidant Activity of Red Algae Kappaphycus alvarezii and Kappaphycus striatum. International Food Research Journal. 22(5): 1977–1984. http://www.ifrj.upm.edu.my/22%20(05)%202015/(35).pdf.
Papitha, R., Selvaraj, C. I., Palanichamy, V., Arunachalam, P., & Roopan, S. M. 2020. In Vitro Antioxidant and Cytotoxic Capacity of Kappaphycus alvarezii Successive Extracts. Current Science. 119(5): 790–798. https://doi.org/10.18520/cs/v119/i5/790-798.
Harb, T. B., Vega, J., Bonomi-Barufi, J., Casas, V., Abdala-Díaz, R., Figueroa, F. L., & Chow, F. 2023. Brazilian Beach-Cast Seaweeds: Antioxidant, Photoprotection and Cytotoxicity Properties. Waste and Biomass Valorization, 14(7): 2249–2265. https://doi.org/10.1007/s12649-022-01999-0.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.