MICROWAVE REFLECTOMETRY CIRCUITS INTEGRATION WITH COAXIAL PROBE FOR INITIAL BREAST TUMOR DETECTION
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.22665Keywords:
Complex-ratio-measuring circuits, synthetic breast tumors, one-port calibration, relative complex permittivity, open-ended coaxial probe, reflection coefficientAbstract
A six-port reflectometry (SPR) system was developed to predict the dielectric properties of both tumor and normal breast tissue, intended for medical diagnostic applications. Ensuring precise measurements, the SPR underwent calibration using a well-established four-step procedure, which will be briefly outlined. Afterward, the investigated coaxial probe was connected to the SPR through the calibrated measurement port. Subsequently, the exposed end of the probe aperture was immersed into synthetic samples representing both healthy and cancerous breast tissue to assess the dielectric constant, εrʹ and loss factor, εrʺ across frequencies ranging from 1.5 GHz to 3.3 GHz. The dielectric constant, εrʹ and loss factor, εrʺ were derived from the measured reflection coefficient using a closed-form equation associated with the coaxial probe. An examination was undertaken to compare the performance of a commercially available vector network analyzer (VNA) outfitted with a Keysight 85070E dielectric probe against an SPR-probe system. The comparison was based on analyzing the reflection coefficient magnitude, phase shift, dielectric constant, and loss factor of synthetic breast tissue samples. The study revealed maximum absolute errors of 0.01, 1.07°, 1.12, and 0.75 for the measured reflection coefficient magnitude, phase shift, dielectric constant, and loss factor, respectively. The calibrated reflection coefficient and predicted relative permittivity, εr can be effectively utilized to distinguish between normal (εrʹ < 50) and tumor (εrʹ > 50) breast tissue.
References
Siegel, R. L., Giaquinto, A. N. and Jemal, A. 2024. Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians. 74(1): 1-114.
Doi: 10.3322/caac.21820.
Baran, A., Kurrant, D., Zakaria, A., Fear, E., LoVetri, J. 2014. Breast Cancer Imaging Using Microwave Tomography with Radar-Derived Prior Information. 2014 USNC-URSI Radio Science Meeting.
Doi: 10.1109/USNC-URSI.2014.6955642.
Bicer, M. B. 2023. Radar-based Microwave Breast Imaging Using Neurocomputational Models. Diagnostics. 13(5): 930.
Doi: 10.3390/diagnostics13050930.
Wang, L. L. 2023. Microwave Imaging and Sensing Techniques for Breast Cancer Detection. Micromachines. 14(7): 1462.
Doi: 10.3390/mi14071462.
Hossain, T. M., Jamlos, M. F., Jamlos, M. A., Dzaharudin, F., Ismail, M. Y., Al-Bawri, S. S., Sugumaran, S., Ahmad Salimi, M. N. 2020. Bandwidth Enhancement of Five-Port Reflectometer-based ENG DSRR Metamaterial for Microwave Imaging Application. Sensors and Actuators A: Physical. 303: 111638.
Doi: 10.1016/j.sna.2019.111638.
Marie Mertens, Maede Chavoshi, Olivia Peytral-Rieu, Katia Grenier, Dominique Schreurs. 2013. Dielectric Spectroscopy: Revealing the True Colors of Biological Matter. IEEE Microwave Magazine. 24(4): 49-62.
Doi: 10.1109/MMM.2022.3233510.
Champbell, A. M. and Land, D. V. 1992. Dielectric Properties of Female Human Breast Tissue Measured In Vitro at 3.2 GHz. Physics in Medicine & Biology. 37(1): 193-210.
Doi: 10.1088/0031-9155/37/1/014.
Cheng, Y. and Fu, M. H. 2018. Dielectric Properties for Non‐Invasive Detection of Normal, Benign, and Malignant Breast Tissues using Microwave Theories. Thorac Cancer. 9(4): 459-465.
Doi: 10.1111/1759-7714.12605.
Jordan Krenkevich, Gabrielle Fontaine, Evelyne Hluszok, Tyson Reimer, Stephen Pistorius. 2024. Tissue Mimicking Materials for Shell-Based Phantoms in Breast Microwave Sensing. IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology.
Doi: 10.1109/JERM.2024.3379747.
Simona Di Meo, Alessia Cannatà, Carolina Blanco-Angulo, Giulia Matrone, Andrea Martínez-Lozano, Julia Arias-Rodríguez, José M. Sabater-Navarro, Roberto Gutiérrez-Mazón, Héctor García-Martínez, Ernesto Ávila-Navarro, Marco Pasian. 2024. Multi-Layer Tissue-Mimicking Breast Phantoms for Microwave-Based Imaging Systems. IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology.
Doi: 10.1109/JERM.2024.3379750.
Mousa Hussein, Falah Awwad, Dwija Jithin, Husain El Hasasna, Khawlah Athamneh, Rabah Iratni. 2019. Breast Cancer Cells Exhibits Specific Dielectric Signature In Vitro Using the Open-Ended Coaxial Probe Technique from 200 MHz to 13.6 GHz. Scientific Reports. 9: 4681.
Doi: 10.1038/s41598-019-41124-1.
Lena Kranold, Jasmine Boparai, Leonardo Fortaleza, Milica Popović. 2022. Skin Phantoms for Microwave Breast Cancer Detection: A Comparative Study. IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology. 6(2): 175-181.
Doi: 10.1109/JERM.2021.3084126.
Jordan Krenkevich, Gabrielle Fontaine, Tyson Reimer, Stephen Pistorius. 2023. Improved Tissue Mimicking Materials for Shell-Based Phantoms in Breast Microwave Sensing. IEEE MTT-S International Microwave Biomedical Conference (IMBioC). 46-48.
Doi: 10.1109/IMBioC56839.2023.10305107.
Nural Pastaci Ozsobaci, Emre Onemli, Cemanur Aydinalp, Tuba Yilmaz. 2024. Measurement and Analysis of In Vivo Microwave Dielectric Properties Collected from Normal, Benign, and Malignant Rat Breast Tissues: Classification Using Supervised Machine Learning Algorithms. IEEE Transactions on Instrumentation and Measurement. 73: 4006911.
Doi: 10.1109/TIM.2024.3390692.
Canicattì, E., Sánchez-Bayuela, D. Á., Castellano, C. R., Angulo, P. M. A., González, R. G., Cruz Hernández, L. M., Martín, J. R., Tiberi, G. and Monorchio, A. 2023. Dielectric Characterization of Breast Biopsied Tissues as Pre-Pathological Aid in Early Cancer Detection: A Blinded Feasibility Study. Diagnostics. 13(18): 3015.
Doi: 10.3390/diagnostics13183015.
Fernández-Aranzamendi, E. G., Castillo-Araníbar, P. R., Román Castillo, E. G. S., Oller, B. S., Ventura-Zaa, L., Eguiluz-Rodriguez, G., González-Posadas, V. and Segovia-Vargas, D. 2024. Dielectric Characterization of Ex-Vivo Breast Tissues: Differentiation of Tumor Types through Permittivity Measurements. Cancers. 16(4): 793.
Doi: 10.3390/cancers16040793.
Simona Di Meo, Giulia Matrone, Giovanni Magenes, Marco Pasian. 2024. On the Low-Cost Production of Tissue-Mimicking Skin Phantoms Up to 40 GHz. IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology. 8(1): 51-58.
Doi: 10.1109/JERM.2024.3349851.
Nadera, N., You, K. Y., Dimon, M. N. and Khamis, N. H. 2018. Wideband and Compact Wilkinson Power Divider Utilizing Series Delta-Stub and Folded Stepped-Impedance Transmission Line. Radioengineering. 27(1): 200-206.
Doi: 10.13164/re.2018.0200.
Nadera, N. and You, K. Y. 2018. Broadband and Compact Complex Ratio Measuring Unit. Microwave and Optical Technology Letters. 60(12): 3039-3045.
Doi: 10.1002/mop.31445.
You, K. Y. 2016. RF Coaxial Slot Radiators: Modeling, Measurements, and Applications. Artech House, Norwood, MA, U.S.
Lee, C. Y., You, K. Y., Abbas, Z., Lee, K. Y., Lee, Y. S. and Cheng, E. M. 2018. S‐Band Five‐Port Ring Reflectometer‐Probe System for In Vitro Breast Tumor Detection. International Journal of RF and Microwave Computer‐Aided Engineering. 28(3): e21198.
Doi: 10.1002/mmce.21198.
Staszek, K. 2024. Fully Analytical Approach to Calibration of Six-Port Reflectometers Using Matched Load and Unknown Loads for One-Port Measurements. IEEE Transactions on Microwave Theory and Techniques. 72(1): 183-193.
Doi: 10.1109/TMTT.2023.3291758.
Lin, W. G. and Ruan, C. L. 1989. Measurement and Calibration of a Universal Six-Port Network Analyzer. IEEE Transactions on Microwave Theory and Techniques. 37(4): 734-742.
Doi: 10.1109/22.18847.
You, K. Y. and Sim, M. S. 2018. Precision Permittivity Measurement for Low-Loss Thin Planar Materials Using Large Coaxial Probe from 1 to 400 MHz. Journal of Manufacturing and Materials Processing. 2(4): 81.
DOI: 10.3390/jmmp2040081
Romeo, S., Di Donato, L., Bucci, O. M., Catapano, I., Crocco, L., Scarfì, M. R. and Massa, R. 2011. Dielectric Characterization Study of Liquid-Based Materials for Mimicking Breast Tissues. Microwave and Optical Technology Letters. 53(6): 1276–1280.
DOI: 10.1002/mop.26001
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.